• 제목/요약/키워드: Super-Resolution

검색결과 447건 처리시간 0.025초

ESRGAN과 Semantic Soft Segmentation을 이용한 객체 분할의 성능 개선 (Performance Improvement of Object Segmentation Using ESRGAN and Semantic Soft Segmentation)

  • 윤동식;곽노윤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.468-471
    • /
    • 2020
  • 본 논문은 ESRGAN(Enhanced Super Resolution GAN)과 Semantic Soft Segmentation을 이용한 객체 분할의 성능 개선에 관한 것이다. 본 논문의 연구진이 이미 제안한 Mask R-CNN과 Semantic Soft Segmentation을 이용한 객체 분할 방법은 전반적으로 객체 분할 성능이 양호한 반면, 객체의 크기가 상대적으로 작으면 분할 성능이 저조해지는 문제점이 있었다. 본 논문은 이러한 문제점을 해결하기 위한 것으로, Mask R-CNN을 통해 검출된 객체의 크기가 일정 기준치 이하인 경우, ESRGAN을 통해 초해상화를 수행한 후, Semantic Soft Segmentation을 수행함으로써 소형 객체의 분할 성능을 개선함에 그 목적이 있다. 제안된 방법에 따르면, 기존의 방볍에 비해 크기가 작은 객체의 분할 특성을 좀 더 효과적으로 개선할 수 있음을 확인할 수 있었다.

자기 지도 학습을 통한 고해상도 얼굴 영상 복원 (Face Super Resolution using Self-Supervised Learning)

  • 조병호;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.724-726
    • /
    • 2020
  • 본 논문에서는 GAN 과 자기 지도 학습(self-supervised learning)을 통해 입력 얼굴 영상의 공간 해상도를 4 배 증가시키는 기법을 제안한다. 제안하는 기법은 변형된 StarGAN v2 구조의 생성자와 구분자를 사용하여 저해상도의 입력 영상만을 가지고 학습 과정을 거쳐 고해상도 영상을 복원하도록 자기 지도 학습을 수행한다. 제안하는 기법은 복원된 영상과 고해상도 영상 간의 손실을 줄이는 지도 학습이 가지고 있는 단점을 극복하고 입력 영상만을 가지고 영상 내부에 존재하는 특징을 학습하여 얼굴 영상에 대한 고해상도 영상을 복원한다. 제안하는 기법과 Bicubic 보간법과의 비교를 통해 우수성을 검증한다.

  • PDF

픽셀, 채널간 불필요한 상호연관 정보를 제거하는 초해상화 딥러닝 기법 (Development of Technique in Super Resolution domain that eliminates unnecessary Correlation information between Pixels & Channels.)

  • 강정흠;배성호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.656-659
    • /
    • 2020
  • 초해상화 딥러닝 기법은 학습 시 수렴하기까지 최소 수백 번의 에폭을 필요로 하며 오랜 시간이 걸린다. 최근, 영상 인식용 딥러닝 모델에서는 학습 수렴 속도를 향상시키기 위해 픽셀, 채널간 불필요한 상호연관 정보를 제거하는 Deconvolution 기술이 제안되었다. 본 논문에서는 최초로 Deconvolution 기술을 초해상화 딥러닝 방법에 적용하여 학습 수렴 속도 증가를 시도했다. 영상 인식 딥러닝 기법과 다르게 초해상화 딥러닝 기법은 이미지 특성 추출 부분과 이미지 복원 부분의 정보를 보존하는 것이 중요하기 때문에, EDSR을 Baseline 모델로 사용하여 양쪽 끝의 레이어는 기존의 Convolution 연산을 그대로 유지하고, 중간 레이어의 ResBlock 내의 Convolution 연산만 Deconvolution 연산으로 바꿔서 구성하였다. 초해상화 벤치마크 데이터셋을 사용한 실험 결과, 수렴속도가 빨라지지 않는 결과를 도출했다. 본 논문에서는 Deconvolution 기술이 Baseline 모델의 성능을 개선하지 못하는 이유를 초해상화 분야에서 기본적으로 적용되는 Residual Learning 기법 때문으로 분석했다.

  • PDF

신경망 기반 오디오 초 해상도 기술 성능 분석 (Performance analysis of audio super-resolution based on neural networks)

  • 임우택;백승권;성종모;이태진
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.337-339
    • /
    • 2020
  • 오디오 초 해상도 기술은 저 해상도의 오디오 신호를 이용하여 고 해상도의 오디오를 복원 또는 생성해 내는 기술이다. 본 기술 분야는 기존에 주파수 대역 확장, 인공 대역 확장 기술 등으로 연구되었으나, 최근 딥러닝 기술의 발전, 이미지 초 해상도 기술 연구 등에 힘입어 오디오 초 해상도 기술 이라는 이름으로 주로 연구되고 있다. 본 논문에서는 이러한 오디오 초 해상도 기술에 연구 동향에 대하여 설명하고, 기존의 논문 들에서 주로 다루고 있는 음성 데이터 베이스가 아닌 MedleyDB 음악 데이터 베이스를 활용하여 실험을 수행하였다. 실험은 4-폴드 교차 검증을 통해 수행되었으며, 실험 결과 제안하는 컨벌루션 신경망 구조 기반 오디오 초 해상도 기술은 입력 저해상도 오디오 대비 SNR 이 3.41 dB 향상됨을 확인하였다.

  • PDF

Attention 모델을 이용한 단일 영상 초고해상도 복원 기술 (A Study on Single Image Super Resolution Using Attention Model)

  • 문환복;윤상민
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.537-539
    • /
    • 2020
  • 단일 영상 기반 초고해상도 복원은 컴퓨터 비전 및 영상처리 분야의 중요한 기초 및 응용 분야 중 하나이며, 딥러닝에 대한 연구가 발전됨에 따라 이를 이용한 다양한 연구들이 활발히 진행되고 있다. 기존 딥러닝 기반 연구들은 복원 성능을 높이기 위해서 다양한 구조의 네트워크를 설계하거나 네트워크를 학습하는 알고리즘들을 중점으로 연구되어 왔다. 최근 들어 네트워크 구조나 설계 이외에 네트워크를 통과하는 정보의 집합체인 특징 맵에 관한 연구들이 진행되고 있다. Attention은 특징 맵에서 채널 간의 관계를 이용하여 특정 채널을 강조하거나 또는 공간 정보를 강조하는 방식으로 특징 맵의 정보를 잘 활용하도록 하여 전체적인 네트워크의 성능을 향상시킨다. 본 논문은 단일 영상 기반 초고해상도 복원 네트워크를 기반으로 다양한 Attention방법들을 적용하고 성능을 비교 및 분석한다.

  • PDF

계층별 양자화 기반 초해상화 다중 스케일 잔차 네트워크 압축 (A Model Compression for Super Resolution Multi Scale Residual Networks based on a Layer-wise Quantization)

  • 황지원;배성호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.540-543
    • /
    • 2020
  • 기존의 초해상도 딥러닝 기법은 모델의 깊이가 깊어지면서, 좋은 성능을 내지만 점점 더 복잡해지고 있고, 실제로 사용하는데 있어 많은 시간을 요구한다. 이를 해결하기 위해, 우리는 딥러닝 모델의 가중치를 양자화 하여 추론시간을 줄이고자 한다. 초해상도 모델은 feature extraction, non-linear mapping, reconstruction 세 부분으로 나누어져 있으며, 레이어 사이에 많은 skip-connection 이 존재하는 특징이 있다. 따라서 양자화 시 최종 성능 하락에 미치는 영향력이 레이어 별로 다르며, 이를 감안하여 강화학습으로 레이어 별 최적 bit 를 찾아 성능 하락을 최소화한다. 본 논문에서는 Skip-connection 이 많이 존재하는 MSRN 을 사용하였으며, 결과에서 feature extraction, reconstruction 부분과 블록 내 특정 위치의 레이어가 항상 높은 bit 를 가짐을 알 수 있다. 기존에 영상 분류에 한정되어 사용되었던 혼합 bit 양자화를 사용하여 초해상도 딥러닝 기법의 모델 사이즈를 줄인 최초의 논문이며, 제안 방법은 모바일 등 제한된 환경에 적용 가능할 것으로 생각된다.

  • PDF

히스토그램 손실함수와 순차적 작업을 이용한 CCTV 영상 화질 향상 (CCTV Image Quality Enhancement using Histogram Loss and Sequential Task)

  • 정민교;최종인;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.217-220
    • /
    • 2022
  • 본 논문에서는 CCTV 영상 화질을 향상하고 해상도를 높이기 위해 딥 러닝(Deep Learning)을 이용하여 잡음 제거(Denoising) 와 초해상도(Super-resolution) 작업을 수행한다. 데이터 증강(Data Augmentation)을 통한 초해상도 성능 향상을 위해서 잡음 제거 네트워크의 출력 영상을 초해상도 네트워크의 입력으로 사용하는 순차적 작업을 사용한다. 또한 딥 러닝을 이용한 영상처리에서 발생하는 평균 밝기 오차 문제를 해결하기 위한 손실함수(Loss Function)와 두 가지 이상의 순차적인 딥 러닝 작업에서 발생하는 문제점을 극복하기 위한 손실함수를 제안한다. 제안하는 손실함수는 네트워크의 출력 영상과 타겟 영상의 밝기 오차를 줄이는 것이 가능하고, 순차적 작업에서 보다 정확한 모델 성능 판단이 가능하다.

  • PDF

대조 학습 기반 초해상도 모델 경량화 기법 (Compression of Super-Resolution model Using Contrastive Learning)

  • 문현철;권용훈;정진우;김성제
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1322-1324
    • /
    • 2022
  • 최근 딥러닝의 발전에 따라 단일 이미지 초해상도 분야에 좋은 성과를 보여주고 있다. 그러나 보다 더 높은 성능을 획득하기 위해 네트워크의 깊이 및 파라미터의 수가 크게 증가하였고, 모바일 및 엣지 디바이스에 원활하게 적용되기 위하여 딥러닝 모델 경량화의 필요성이 대두되고 있다. 이에 본 논문에서는 초해상도 모델 중 하나인 EDSR(Enhanced Deep Residual Network)에 대조 학습 기반 지식 전이를 적용한 경량화 기법을 제안한다. 실험 결과 제안한 지식 전이 기법이 기존의 다른 지식 증류 기법보다 향상된 성능을 보임을 확인하였다.

  • PDF

디블러를 고려한 초해상화 모델 기반 차량 번호판 인식 성능 개선 (Improving License Plate Recognition Based on a Deblurring Super-Resolution Model)

  • 이여진;문용혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.473-475
    • /
    • 2023
  • 자동차 번호판 인식은 영상 내 검출한 차량의 번호판의 문자열을 인식하여 차량을 식별하고 추적하는 기술로 주변 환경에 의한 잡음, 왜곡과 차량의 움직임으로 발생한 흐림, 영상 입력 장치와의 물리적 거리 등에 강인해야 한다. 본 논문에서는 차량 움직임으로 발생한 흐림이 있는 저해상도 영상에 대한 번호판 인식 성능의 향상을 위해 디블러링 모델과 초해상화 모델을 이용한 영상 복원 방법을 제안한다. 실험을 통해 디블러링 모델과 초해상화 모델을 결합하여 흐림이 있는 저해상도 국내 번호판 영상에서의 인식 성능을 개선하였다.

Development of an event time finding algorithm for multi-wire drift chamber-based Level-1 trigger system in the Belle II experiment

  • Eunil Won;Hyunki Moon
    • Journal of the Korean Physical Society
    • /
    • 제80권
    • /
    • pp.117-122
    • /
    • 2022
  • The Belle II detector at the SuperKEKB e+e- collider in Japan is designed for precise measurements of weak interaction parameters and new physics beyond the Standard Model; therefore, it requires very high instantaneous luminosity. To handle such high luminosity, the level-1 trigger system in the Belle II experiment is designed to efficiently trigger events of interest with the highest efficiency. Among many sub-detectors, track reconstruction of charged particles is performed using information collected from the central drift chamber. Therefore, the central drift chamber-based trigger plays a central role in distinguishing specific types of physics based on fast track reconstruction. To improve the longitudinal position resolution of a track vertex and for the fine-tuning of trigger signal timing, the time of the collision, which we call event time, is necessary. We developed an event time finding algorithm using the wire hit time information obtained from the central drift chamber and validated our algorithm through Monte Carlo simulation.