• 제목/요약/키워드: Super-High-Rise Building

검색결과 144건 처리시간 0.028초

Diagrid Structural System for High-Rise Buildings: Applications of a Simple Stiffness-based Optimized Design

  • Gerasimidis, Simos;Pantidis, Panos;Knickle, Brendan;Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제5권4호
    • /
    • pp.319-326
    • /
    • 2016
  • The ingenuity of structural engineers in the field of tall and super-tall buildings has led to some of the most remarkable inventions. During this evolution of structural engineering concepts in the last 100 years, the technical challenges that engineers encountered were extraordinary and the advances were unprecedented. However, as the accomplishments of structural engineers are progressing, the desire for taller and safer structures is also increasing. The diagrid structural system is part of this evolving process as it develops a new paradigm for tall building design combining engineering efficiency and new architectural expression. The first appearances of this type of tall buildings have already been constructed and the interest of both engineering and architectural communities is growing mainly due to the many advantages compared to other structural systems. This paper presents a simple approach on optimizing member sizes for the diagonals of steel diagrid tall buildings. The optimizing method is based on minimizing the volume of the diagonal elements of a diagrid structure. The constraints are coming from the stiffness-based design, limiting the tip deflection of the building to widely accepted regulative limits. In addition, the current paper attempts to open the discussion on the important topic of optimization and robustness for tall buildings and also studies the future of the diagrid structural system.

개구부가 있는 벽식구조물의 3차원해석을 위한 슈퍼요소와 부분구조의 이용 (Use of Super Elements and Substructures for Three Dimensional Analysis of the Box System with Openings)

  • 이동근;김현수;남궁계홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2001
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take tremendous amount of computational time and memory if the entire building structure is subdivided into a finer mesh . An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study, The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

The Structural Engineering Design and Construction of the Highest Occupiable Skybridge in the World: The Address Jumeirah Resort, Dubai, UAE

  • Hadow, Zaher;Dannan, Yamen
    • 국제초고층학회논문집
    • /
    • 제11권1호
    • /
    • pp.61-68
    • /
    • 2022
  • The Address Jumeirah Resort is a mixed-use 77-story tower reaching a height of 301 meters with a slenderness ratio of 13.5:1. The development is situated in the Jumeirah Beach District and accommodates 217 key five-star hotel suites, 478 residential apartments, 444 serviced-branded apartments, retail shops, ballrooms and entertainment facilities around the premises. The building has over 242,000 m2 of usable area. The project is an award-winning development that broke multiple Guinness records. The focus of the paper is to present the challenges faced in the structural design and construction of the super tall tower and the highest occupiable skybridge in the world.

건축구조물의 구조내화설계를 위한 설계화재모델에 관한 연구 (A Study on the Design Fire Model for Structural Fire Resistant Design in Buildings)

  • 권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.256-257
    • /
    • 2019
  • Recently, the fire risk of architectural structures is increasing due to the super high - rise and super - size of the buildings. Therefore, the direction of fire safety design tends to change from the existing design to the performance - based design. In particular, domestic fire safety policies are divided into building law and fire fighting law. In case of fire fighting law, performance design is already carried out. Therefore, this study summarizes the prediction formula for fire characteristics among the structural fireproofing design field as shown in Fig. 1 according to this situation, and compares it with the standard method of each country in particular.

  • PDF

재난시 위치식별기술을 활용한 피난 유도에 관한 연구 (A Study on Evacuation Guidance using Location Identification Technology for Disaster)

  • 문상호;유영중;이철규
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권12호
    • /
    • pp.937-946
    • /
    • 2017
  • 인간 생활을 보다 편리하게 하기 위하여 대형 빌딩, 복합상가, 대형 지하시설물 등을 포함한 최근 건물들은 점점 대형화 및 초고층화가 되어 가고 있는 추세이다. 그러나 초고층 건물들이 많이 증가할수록 화재 등 대형 재난에 대한 위험성도 점점 증가하고 있다. 특히, 초고층 건물에 화재와 같은 대형 재난이 발생할 경우에 재실자를 대상으로 신속하고 정확한 피난유도가 이루어지지 않는다면, 인명 피해는 상상 이상으로 엄청날 것이다. 따라서 건물 내부에 있는 재실자들이나 구조가 필요한 사람들을 대상으로 신속한 피난 유도 및 구조가 이루어져야 하며, 이를 위해서는 건물 내부에 있는 사람들의 규모와 위치 식별 및 파악이 선행되어야 한다. 이를 위하여 먼저 건물 내부의 재실자 파악을 위한 기존 위치추적기술에 대한 선행연구를 수행한다. 그리고 이를 기반으로 본 논문에서는 실제 재난 발생 시에 초고층빌딩을 대상으로 위치식별기술을 활용하여 실시간 인원수를 파악하여 밀집도를 개선하고 피난시간을 단축할 수 있는 방안에 대해 연구하고자 한다.

MOVEMENT CONTROL OF HIGH-RISE BUILDINGS DURING CONSTRUCTION

  • Taehun Ha;Sungho Lee;Bohwan Oh
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.46-51
    • /
    • 2011
  • High-rise buildings are widely being constructed in the Middle-East, South-East, and East Asia. These buildings are usually willing to stand for the landmark of the region and, therefore, exhibit some extraordinary features such as super-tall height, elevation set-backs, overhangs, or free-form exterior surface, all of which makes the construction difficult, complex, and even unsafe at some construction stages. In addition to the elaborately planned construction sequence, prediction and monitoring of building's movement during construction and after completion are required for precise and safe construction. This is often called the Building Movement Control during construction. This study describes Building Movement Control of the KLCC Tower, a 58-story office building currently being built right next to the famous PETRONAS Twin Towers. The main items of the Building Movement Control for the KLCC Tower are axial shortening and verticality. Preliminary prediction of these items are already carried out by the structural design team but more accurate prediction based on construction stage analysis and combined with time-dependent material testing, field monitoring, and site survey is done by the main contractor. As of September 2010, the Tower is under construction at level 30, where the plan abruptly changes from rectangle to triangle. Findings and troubleshooting until the current construction stage are explained in detail and implementations are suggested for future applications.

  • PDF

주상 복합 구조물에 적용된 중간층 면진 시스템의 성능 검토 (Control Performance Evaluation of Mid-Story Isolation System for Residence-Commerce Complex Building)

  • 박광섭;김윤태;김현수
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.33-40
    • /
    • 2019
  • A seismic isolation system is one of the most effective control devices used for mitigating the structural responses due to earthquake loads. This system is generally used as a type of base isolation system for low- and mid-rise building structures. If the base isolation technique is applied to high-rise buildings, a lot of problems may be induced such as the movement of isolation bearings during severe wind loads, the stability problem of bearings under large compression forces. Therefore, a mid-story isolation system was proposed for seismic protection of high-rise buildings. Residence-commerce complex buildings in Korea have vertical irregularity because shear wall type and frame type structures are vertically connected. This problem can be also solved by the mid-story isolation system. An effective analytical method using super elements and substructures was proposed in this study. This method was used to investigate control performance of mid-story isolation system for residence-commerce complex buildings subjected to seismic loads. Based on numerical analyses, it was shown that the mid-story isolation system can effectively reduce seismic responses of residence-commerce complex tall buildings.

Corner Steel plate-Reinforced Core Wall System

  • Park, Hong-Gun;Kim, Hyeon-Jin;Park, Jin-Young
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.193-199
    • /
    • 2019
  • For better structural performance and constructability, a new composite core wall system using steel plate columns at the corners of the core section was developed. Using the proposed core wall, nonlinear section analysis and 3-dimensional structural analysis were performed for the prototype core wall section and super high-rise building, respectively. The analysis results showed that, when compared to traditional RC core wall case, the use of the corner steel plate columns provided better structural capacity, which allows less wall thickness and re-bars. Further, due to such effects, the construction cost and time can be reduced despite the use of steel plate columns.

초고층 건물의 전면기초(MAT기초) 해석 및 설계 (ANALYSIS AND DESIGN OF MAT FOUNDATION FOR HIGH-RISE BUILDINGS)

  • 홍원기;황대진;권장혁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.94-110
    • /
    • 1994
  • Types of foundation of high rise buildings are primarily determined by loads transmitted from super structure, soil bearing capacity and available construction technology. The usd of deep foundation cannot be justified due to the fact that rock of enough bearing capacity is not found down until 90 ~ 100m. When a concentration of high soil pressure must be distributed over the entire building area, when small soft soil areas must be bridged, and when compressible strata are located at a shallow depth, mat foundation may be useful in order to have settlement and differential settlement of variable soils be minimized. The concept of mat foundation will also demonstrate some difficulities of applications if the load bearing demand directly carried down to the load -bearing strata exceeds the load -bearing capacity. This paper introduces both the analysis and design of mat type foundation for high rise buildings as well as the methodology of modelling of the soil foundation, especially, engineered to redistribute the stress exceeding the soil bearing capadity. This process will result in the wid spread of stresses over the entire building foundation.

  • PDF

Wind-induced Aerodynamic Instability of Super-tall Buildings with Various Cross-sectional Shapes

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.303-311
    • /
    • 2019
  • The effectiveness of aerodynamic modification to reduce wind loadings has been widely reported. However, most of previous studies have been investigated dynamic forces and pressure distributions on tall buildings with various unconventional configurations. This study was investigated dynamic characteristics and aerodynamic instability of super-tall buildings with unconventional configurations through extensive aeroelastic model experiments. Seventeen types of supertall building models were considered such as basic and corner modification with corner cut, chamfered, oblique opening, tapered, inversely tapered, bulged, helical with twist angles of $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ and composite with $360^{\circ}$ helical & corner cut, 4-tapered & $360^{\circ}$ helical & corner cut, setback & corner cut, setback & $45^{\circ}$ rotate. As a result, aerodynamic characteristics of helical models with single modification are superior to those of other models with single modification. However, effect of twist angle for helical model is negligible. Further, the 4-tapered & $360^{\circ}$helical & corner cut model is most effective in reducing the along- and across-wind fluctuating displacement responses in all of experimental models.