• 제목/요약/키워드: Super Element

검색결과 229건 처리시간 0.024초

적응적 쉘유한요소를 이용한 박스형 구조물의 좌굴해석 (Buckling Analysis of Box-typed Structures using Adaptive Shell Finite Elements)

  • 송명관;김선훈
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.265-272
    • /
    • 2007
  • 본 논문에서는 적응적 h-유한요소 세분화에 의한 박스형 절판 구조물의 선형좌굴 유한요소해석법을 제안한다. 면내회전 자유도를 갖는 변절점 평판쉘유한요소를 사용하여 유한요소의 거동을 개선하고 6자유도를 갖는 다른 유한요소와의 자유도의 연결을 용이하게 한다. 이와 같이 개발된 평판쉘유한요소에 의하여 박스형 절판구조물의 정확한 구조해석이 가능한데, 변절점유한요소를 정식화함으로써 적응적 h-유한요소 세분화시에 발생하는 다른 패턴의 사각형 유한요소 세분화망의 연결을 용이하게 해결한다. 오차평가에 대한 개선된 응력장을 얻기 위하여 상위수렴 조각회복법을 적용한다. 이와 같이 상위수렴 조각회복법에 의한 개선된 응력장에 의하여 구성된 유한요소 세분화망을 이용하여 좌굴하중과 좌굴모드를 자동적으로 구할 수 있도록 한다.

40m 조합모듈교량 상부구조 이송에 따른 안전성 검토 (Safety Evaluation of 40m Combined Modular Bridge Super-Structures Based on Transportation Lifting Methods)

  • 박성민;정우영
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.77-84
    • /
    • 2015
  • The purpose of this study was the analytical safety evaluation on the super-structure of precast modular bridge using standardized modular members and robotic construction during the transportation routing and lifting conditions. In order to evaluate the safety performance of the bridge system, 3-D full scale Finite Element (FE) of 40 m standardized modular block was developed in ABAQUS, followed by the analytical study to classify the structural system according to steel girder structures: 1) modular bridge block lifting method including the steel girder system; 2) modular bridge block lifting method without the steel girder system. The results from the analytical study revealed that the maximum stress of each modular member was within the maximum allowable stresses during lifting condition. However, the stress concentration at the connected area was more critical in comparison to the behavior of 40 m combined modular blocks during lifting time

다단계 부분 구조법에 의한 비 압축성 유동 계산 (An Incompressible Flow Computation using a Multi-level Substructuring Method)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.83-90
    • /
    • 2004
  • Substructuring methods are usually used in finite element structural analyses. In this study a multi-level substructuring algorithm is developed and proposed as a possible candidate for incompressible fluid solves. Finite element formulation for incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et.al.[5]. The present algorithm consists of four stages such as a gathering stage, a condensing stage, a solving stage and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At highest level, each subdomain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each subdomain has been replaced by a sequential static condensation. The global algebraic system arising feom the assembly of each subdomains is solved using Conjugate Gradient Squared(CGS) method. In this case, pre-conditioning techniques usually accompanied by iterative solvers are not needed.

  • PDF

Elasto-plastic nonconforming solid element with variable nodes

  • Choi, Chang-Koon;Chung, Gi-Taek
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.325-340
    • /
    • 1995
  • The iterative procedure to use the nonconforming elements in elasto-plastic problems is established and applied to the variable node transition solid element developed for the automated three-dimensional local mesh refinement. Through numerical tests, the validity and performance of the element are examined. As the nonlinear iterative procedure presented in this paper is accomplished for the general three-dimensional case, it can also be easily applied to the two-dimensional elements such as membranes, plates and shells.

In doped ZTO 기반 산화물 반도체 TFT 소자의 CuCa 전극 적용에 따른 특성 변화 및 신뢰성 향상

  • 김신;오동주;정재경;이상호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.167.2-167.2
    • /
    • 2015
  • 고 이동도(~10 cm/Vs), 낮은 공정온도 및 높은 투과율 등의 특성을 갖는 산화물 반도체는 저 소비전력, 대면적화 및 고해상도 LCD Panel에 적합한 재료로서 현재 일부 Mobile Panel 및 TFT-LCD Panel의 양산에 적용되고 있으나, 향후 UHD급(4 K, 8 K)의 대형, 고해상도 Panel에의 적용을 위해서는 30 cm2/Vs 이상의 고 이동도 재료의 개발 및 저 저항 배선의 적용에 따른 소자 신뢰성의 개선이 필요하다. Cu는 대표적인 저 저항 배선 재료로 일부 양산에 적용되고 있으나, Cu 전극과 산화물 반도체의 계면에서 Cu원자의 확산 및 Cu-O 층의 형성에 의한 소자 특성 저하의 문제가 있다. 본 연구에서는 고 이동도의 In doped-ZTO계 산화물 반도체를 기반으로 채널 층과 Cu source-Drain layer의 계면에서의 Cu element의 거동 및 TFT 소자 특성과의 상관관계를 고찰하고, 계면에 형성된 Cu-O layer에 대해 높은 전자 친화도를 갖는 Ca element를 첨가에 의한 TFT 소자 특성의 변화를 관찰하였다. 본 연구에서는 이러한 효과로 인한 소자 신뢰성의 향상을 기대하였으며, 우선 In doped-ZTO 채널 층에 Cu와 CuCa 2at% source-drain을 적용한 TFT 특성을 확인하였다. 그 결과, Cu는 Field-effect mobility: ~17.67 cm2/Vs, Sub-threshold swing: 0.76 mV/decade 및 Vth:, 4.40 V의 결과가 얻어졌으며 CuCa 2at%의 경우 Field-effect mobility: ~17.84 cm2/Vs, Sub-threshold swing: 0.86 mV/decade 및 Vth:, 5.74 V의 결과가 얻어졌다. 소자신뢰성 측면에서도 Bias Stress의 변화량 ${\delta}Vth$의 경우 Cu : 4.48 V에 대해 CuCa 2at% : 2.81 V로 ${\delta}Vth$:1.67 V의 개선된 결과를 얻었다.

  • PDF

Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation

  • Lu, C.L.;Li, Q.S.;Huang, S.H.;Tuan, Alex Y.;Zhi, L.H.;Su, Sheng-chung
    • Wind and Structures
    • /
    • 제23권4호
    • /
    • pp.313-350
    • /
    • 2016
  • Taipei 101 Tower, which has 101 stories with height of 508 m, is located in Taipei where typhoons and earthquakes commonly occur. It is currently the second tallest building in the world. Therefore, the dynamic performance of the super-tall building under strong wind actions requires particular attentions. In this study, Large Eddy Simulation (LES) integrated with a new inflow turbulence generator and a new sub-grid scale (SGS) model was conducted to simulate the wind loads on the super-tall building. Three-dimensional finite element model of Taipei 101 Tower was established and used to evaluate the wind-induced responses of the high-rise structure based on the simulated wind forces. The numerical results were found to be consistent with those measured from a vibration monitoring system installed in the building. Furthermore, the equivalent static wind loads on the building, which were computed by the time-domain and frequency-domain analysis, respectively, were in satisfactory agreement with available wind tunnel testing results. It has been demonstrated through the validation studies that the numerical framework presented in this paper, including the recommended SGS model, the inflow turbulence generation technique and associated numerical treatments, is a useful tool for evaluation of the wind loads and wind-induced responses of tall buildings.

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권1호
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

Semi-analytical elastostatic analysis of two-dimensional domains with similar boundaries

  • Deeks, Andrew J.
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.99-118
    • /
    • 2002
  • The scaled-boundary finite element method is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one coordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) coordinate direction. These coordinate directions are defined by the geometry of the domain and a scaling centre. This paper presents a general development of the scaled boundary finite-element method for two-dimensional problems where two boundaries of the solution domain are similar. Unlike three-dimensional and axisymmetric problems of the same type, the use of logarithmic solutions of the weakened differential equations is found to be necessary. The accuracy and efficiency of the procedure is demonstrated through two examples. The first of these examples uses the standard finite element method to provide a comparable solution, while the second combines both solution techniques in a single analysis. One significant application of the new technique is the generation of transition super-elements requiring few degrees of freedom that can connect two regions of vastly different levels of discretisation.

190 kVA급 초전도한류소자의 특성 (Characteristics of a 190 kVA Superconducting Fault current Limiting Element)

  • 마용호;이주영;박권배;오일성;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.