• Title/Summary/Keyword: Super Critical Pressure

Search Result 48, Processing Time 0.028 seconds

Visualizations of Gas-centered Swirl Sprays in Sub to Super Critical Conditions (임계조건에 따른 기체중심 스월 분무의 가시화 시험)

  • Kim, Dohun;Lee, Keonwoong;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2014
  • The gas-centerd swirl injectors are widely used on the main combustor of large liquid propellant rocket engines. Since the gas-liquid propellants, such as kerosene and oxygen-rich gas combination, are mixed and burned in the high pressure condition over the critical pressure point, the cold-flow spray test in the atmospheric condition can not represent the actual spray pattern. To observe the near actual spray patterns of gas-centered swirl injector, the high pressure spray chamber and the control system were constructed. The operating sequence was controlled precisely to obtain clear visualization images.

Simulator Development of 1000MW Class Ultra Super Critical Coal-Fired Power Plant with Advanced Process Control Algorithm (고급공정제어 알고리즘을 이용한 1000MW급 차세대화력발전소 시뮬레이터 개발)

  • Oh, Ki-Yong;Lim, Geon-Pyo;Kim, Ho-Yol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1817-1818
    • /
    • 2008
  • Even though efficiency of coal-fired power plant is proportional to operating temperature, increasement of operating temperature is limited by a technological level of each power plant components. It is an alternative plan to increase operating pressure up to ultra super critical point for efficiency enhancement. It is difficult to control in that pressure within safety guideline that many unexpected phenomena are happen because that region is highly nonlinear region. In this paper, Advanced process control algorithm, ARX and Fuzzifier, is introduced. Then power plant control logics applied Unit Step Optimizer, which is combination of ARX and Fuzzifier are proposed. Its performance is tested and analyzed with design guide line.

  • PDF

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(Ultra Super Critical) Steam Turbine (550MW급 초초임계압(USC, Ultra Super Critical) 증기터빈의 Spike Vibration 에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.442-447
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed(3,600rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the Lower Half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

  • PDF

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(ultra super critical) Steam Turbine (550MW급 초초임계압(USC, ultra super critical) 증기터빈의 Spike Vibration에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak;Park, Jong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1238-1245
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450 rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed (3,600 rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the lower half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube (원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발)

  • Kang, Deog-Ji;Kim, Hwan-Yeol;Bae, Yun-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

Large deflection analysis of point supported super-elliptical plates

  • Altekin, Murat
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.333-347
    • /
    • 2014
  • Nonlinear bending of super-elliptical plates of uniform thickness under uniform transverse pressure was investigated by the Ritz method. The material was assumed to be homogeneous and isotropic. The contribution of the boundary conditions at the point supports was introduced by the Lagrange multipliers. The solution was obtained by the Newton-Raphson method. The influence of the location of the point supports on the central deflection was highlighted by sensitivity analysis. An approximate relationship between the central deflection and the super-elliptical power was obtained using the method of least squares. The critical points where the maximum deflection may develop, and the influence of nonlinearity were highlighted. The nonlinearity was found to be sensitive to the aspect ratio. The accuracy of the algorithm was validated by comparing the central deflection with the solutions of elliptical and rectangular plates.

Optimum Conditions of Super-critical Water Oxidation Process for Treatment of Slurry Piggery Wastewater (슬러리형 돈사분뇨처리를 위한 초임계수 산화공정의 최적 조건)

  • Kim, Ean-Ho;Seo, Jeoung-Yoon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • In this study, the possibility and the optimal conditions for treating slurry type piggery wastewater using supercritical water oxidation were tested in the laboratory. The results could be summarized as follows; The slurry type piggery wastewater, which was diluted 50 times, was treated most effectively at the pressure of 300 bar, the temperature of $550^{\circ}C$ and the residence time of 10 minutes. The air saturated water was injected, as an oxidizing agent, and the removal efficiencies of $COD_{Cr}$, T-N, $NH_4^+$-N and T-Pattheoptimal conditions were 92, 40, 59 and 100%, respectively. Therefore, analte rnativemea suremu stbetaken to improve theremo valefficiency of the nitrogen compounds.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

A Study for Pressure Difference and Critical Velocity by Pressurization of Elevator Shaft at High Rise Apartment (고층 공동주택의 승강로가압을 이용한 차압 및 방연풍속에 관한 연구)

  • Park, Kyung-Hwan;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2011
  • It is not recommended that elevator use for egress at (super) high rise buildings because elevator shaft main roles to spread of fire smoke. But in North America used to protect this area by elevator shaft pressurization. These tests are performed at high rise apartment to verify that elevator shaft pressurization can protect to spread of fire smoke or not. and verify to used for egress at fire. Pressurization at elevator shaft make pressure difference of 50 Pa all floor at 150 CMM because this method have low friction loss from air flow. Also when dwelling door and elevator door are opened that critical velocity is performed to protect of back-layering from fire room for escape routs by 180 CMM. Therefore through out these pressurization tests by elevator shaft are estimated to have less overpressure because supply air difference are low between to satisfy critical velocity at one door opened and maintain to pressure difference all doors closed. Finally we verified that disable or residual people can use elevator for egress at fire by elevator shaft pressurization.

Binder Removal by Supercritical $CO_2$ in Powder Injection Molded WC-Co (WC-Co계 분말사출성형에서 초임계$CO_2$에 의한 결합제 제거)

  • 김용호;임종성;이윤우;김소나;박종구
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • The conventional debinding process in metal injection molding is very long time-consuming and unfriendly environmental method. Especially, in such a case of injection molded parts from hard and fine metal powder, such as WC-Co, an extremely long period of time is necessary in the conventional slow binder removal process. On the other hand, supercritical debinding is thought to be the effective method which is appropriate to eliminate the aforementioned inconvenience in the prior art. The supercritical fluid has high diffusivity and density, it can penetrate quickly into the inside of the green metal bodies, and extract the binder. In this paper, super-critical debinding is compared with wicking debinding process. Wax-based binder system is used in this study. The binder removal rate in supercritical $CO_2$ have been measured at $65^{\circ}C$, 75$^{\circ}C$ in the pressure range from 20 MPa to 28 MPa. Pores and cracks in silver bodies after sintering were observed using SEM When the super-critical $CO_2$ debinding was carried out at 75$^{\circ}C$, almost all the wax (about 70 wt% of binder) was removed in 2 hours under 28 MPa and 2.5 hours under 25 MPa.

  • PDF