• Title/Summary/Keyword: SupT1 cells

Search Result 281, Processing Time 0.025 seconds

Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus

  • Min Jae Kim;Tae Jin Kim;Yun Ji Kang;Ji Yeon Yoo;Jeong Hwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.211-218
    • /
    • 2023
  • A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.

Phosphorylation of Elongation Factor-2 And Activity Of Ca2+/Calmodulin-Dependent Protein Kinase III During The Cell Cycle

  • Suh, Kyong-Hoon
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • Phosphorylation of the eukaryotic elongation factor 2 (eEF-2) blocks the elongation step of translation and stops overall protein synthesis. Although the overall rate of protein synthesis in mitosis reduces to 20% of that in S phase, it is unclear how the protein translation procedure is regulated during the cell cycle, especially in the stage of peptide elongation. To delineate the regulation of the elongation step through eEF-2 function, the changes in phosphorylation of eEF-2, and in activity of corresponding $Ca^{2+}$/calmodulin (CaM)-dependent protein kinase III (CaMK-III) during the cell cycle of NIH 3T3 cells, were determined. The in vivo level of phosphorylated eEF-2 showed an 80% and 40% increase in the cells arrested at G1 and M, respectively. The activity of CaMK-III also changed in a similar pattern, more than a 2-fold increase when arrested at G1 and M. The activity change of the kinase during one turn of the cell cycle also demonstrated the activation at G1 and M phases. The activity change of cAMP-dependent protein kinase (PKA) was reciprocal to that of CaMK-III. These results indicated: (1) the activity of CaMK-III was cell cycle-dependent and (2) the level of eEF-2 phosphorylation followed the kinase activity change. Therefore, the elongation step of protein synthesis might be cell cycle dependently regulated.

  • PDF

Saponin isolated from Platycodon grandiflorum induces cell cycle arrest in hepatic stellate cells

  • Lee, Kyung-Jin;Shin, Dong-Weon;Chung, Young-Chul;Kim, Young-Sup;Ryu, Si-Yung;Roh, Sung-Hwan;Cho, Young-Soo;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.103.3-104
    • /
    • 2003
  • Activation of hepatic stellate cell has been identified as a critical step in hepatic fibrogenesis and is regulated by several factors including cytokines and oxidative stress. In this study, we assayed effects of saponin (CKS), inulin (CKI) and oligo-sugars (CKO) isolated from Platycodon grandiflorum A. DC, changkil (CK) on experimental cell cycle arrest and apoptosis in hepatic stellate cell line (HSC-T6). CKS induced cell arrest at G$_1$. CKS also reduced intercellular reactive oxygen species and collagen synthesis in hydrogen peroxide-induced oxidative stress and acetaldehyde-stimulated collagen synthesis, respectively, in HSC-T6 cells. (omitted)

  • PDF

Inhibition of Herpesvirus-6B RNA Replication by Short Interference RNAs

  • Yoon, Jong-Sub;Kim, Sun-Hwa;Shin, Min-Chul;Lee, Dong-Gun;Hong, Seong-Karp;Jung, Yong-Tae;Khang, In-Gu;Shin, Wan-Shik;Kim, Chun-Choo;Paik, Soon-Young
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.383-385
    • /
    • 2004
  • RNA interference (RNAi) is a process of sequence-specific gene silencing, which is initiated by double-stranded RNA (dsRNA). RNAi may also serve as an antiviral system in vertebrates. This study describes the inhibition of herpesvirus-6B (HHV-6B) replication by short interference RNAs (siRNAs) that are targeted to the U38 sequence that encodes DNA polymerase. When virus-infected SupT1 cells were treated by siRNA, these cells blocked the cytopathic effect (CPE) and detected the HHV-6B antibody-negative in indirect immunofluorescence assays (IFA). Our result suggests that RNAi can efficiently block Herpesvirus-6B replication.

Effect of Extracts from Safflower Seeds on Osteoblastic Differentiation and Intracellular Free Calcium Concentration in MC3T3-El Cells

  • Jang, Hye-Ock;Eom, Hyun-Sup;Roh, Sung-Bae;Yun, ll
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • Very little research has been carried out on safflower seed for the prevention and treatment of the bone deficiency diseases, including osteoporosis, which are supported by scientific evidences. In the present study, $3{\mu}l$ of 0.1% dried crude extract or $2{\mu}l$ of 0.1% dried aqueous fraction were shown to significantly accelerate the rate of differentiation of osteoblast. Also, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells: $3{\mu}l$ of 0.1% dried crude extract and $2{\mu}l$ of 0.1% dried aqueous fraction significantly increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells ($8{\times}10^{-4}$) to the extent that it deserves a considerable attention. Furthermore, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells, and $300{\mu}M$ $Cd^{2+}$, specific calcium channel blocker, completely blocked the increase. Therefore, the increased $[Ca^{2+}]_i$ of the cultured osteoblast cells by safflower seed component continued to activate calcium channel.

Methylanthranilate, a Food Fragrance Attenuates Skin Pigmentation through Downregulation of Melanogenic Enzymes by cAMP Suppression

  • Heui-Jin Park;Kyuri Kim;Eun-Young Lee;Prima F. Hillman;Sang-Jip Nam;Kyung-Min Lim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.231-239
    • /
    • 2024
  • Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in MelanodermTM. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.

Immunosuppressive Effect of the Intraperitonially Injected Pine Needle Distillate in Mice

  • Chung, Young-Jin;Bae, Myung-Won;Chung, Kyeong-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • This study examined the effect of pine needle distillate (Pinus densiflora Sieb. et Zucc) on the immune system and hematological parameters. C57BL/6 male mice weighing 20 ~21 g were divided into 3 groups and intraperitonially injected with either 200 $\mu$L of saline (control), 50% diluted (P50) or 100% pine needle distillate (P100) once a day for 24 days. At the end of the experiment, the mice were anesthetized by ether and peripheral blood was collected from the femoral artery and the spleen was excised. Spleen weight decreased significantly (p<0.001) in the pine needle groups compared to the control group. The blood was used for a complete blood count and flow cytometrical analysis after immunofluorescence staining. The pine needle distillate dose-dependently decreased the CD4$^{+}$/CD8 sup +/ ratio (p <0.05), and showed a tendency to increase the mean FSC (forward scatter) values of the CD8$^{+}$T cells, while decrease the values of the CD4$^{+}$T cells. There were no significant differences in WBC, RBC and platelet counts among the three groups, but hemoglobin and hemoglobin-related parameters and platelet volume increased and red blood cell volumes decreased with the administration of the pine needle distillate. These results suggest that the pine needle distillate may have immunosuppressive effects.

[Ca2+]-dependent Generation of Intracellular Reactive Oxygen Species Mediates Maitotoxin-induced Cellular Responses in Human Umbilical Vein Endothelial Cells

  • Yi, Sun-Ju;Kim, Kyung Hwan;Choi, Hyun Jung;Yoo, Je Ok;Jung, Hyo-Il;Han, Jeong-A;Kim, Young-Myeong;Suh, In Bum;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Maitotoxin (MTX) is known as one of the most potent marine toxins involved in Ciguatera poisoning, but intracellular signaling pathways caused by MTX was not fully understood. Thus, we have investigated whether intracellular reactive oxygen species (ROS) are involved in MTX-induced cellular responses in human umbilical vein endothelial cells. MTX induced a dose-dependent increase of intracellular [$Ca^{2+}$]. MTX stimulated the production of intracellular ROS in a dose- and time-dependent manner, which was suppressed by BAPTA-AM, an intracellular $Ca^{2+}$ chelator. Ionomycin also elevated the ROS production in a dose-dependent manner. MTX elevated transamidation activity in a time-dependent manner and the activation was largely inhibited by transfection of tissue transglutaminase siRNA. The activation of tissue transglutaminase and ERK1/2 by MTX was suppressed by BAPTA-AM or ROS scavengers. In addition, MTX-induced cell death was significantly delayed by BAPTA-AM or a ROS scavenger. These results suggest that [$Ca^{2+}$]-dependent generation of intracellular ROS, at least in part, play an important role in MTX-stimulated cellular responses, such as activation of tTGase, ERK phosphorylation, and induction of cell death, in human umbilical vein endothelial cells.

Continuous DC-CIK Infusions Restore CD8+ Cellular Immunity, Physical Activity and Improve Clinical Efficacy in Advanced Cancer Patients Unresponsive to Conventional Treatments

  • Zhao, Yan-Jie;Jiang, Ni;Song, Qing-Kun;Wu, Jiang-Ping;Song, Yu-Guang;Zhang, Hong-Mei;Chen, Feng;Zhou, Lei;Wang, Xiao-Li;Zhou, Xin-Na;Yang, Hua-Bing;Ren, Jun;Lyerly, Herbert Kim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2419-2423
    • /
    • 2015
  • Background: There are few choices for treatment of advanced cancer patients who do not respond to or tolerate conventional anti-cancer treatments. Therefore this study aimed to deploy the benefits and clinical efficacy of continuous dendritic cell-cytokine induced killer cell infusions in such patients. Materials and Methods: A total of 381 infusions (from 67 advanced cases recruited) were included in this study. All patients underwent peripheral blood mononuclear cell apheresis for the following cellular therapy and dendritic cells-cytokine induced killer cells were expanded in vitro. Peripheral blood T lymphocyte subsets were quantified through flow cytometry to address the cellular immunity status. Clinical efficacy and physical activities were evaluated by RECIST criteria and Eastern Cooperative Oncology Group scores respectively. Logistic regression model was used to estimate the association between cellular infusions and clinical benefits. Results: An average of $5.7{\pm}2.94{\times}10^9$ induced cells were infused each time and patients were exposed to 6 infusions. Cellular immunity was improved in that cytotoxic $CD8^+CD28^+$ T lymphocytes were increased by 74% and suppressive $CD8^+CD28^-$ T lymphocytes were elevated by 16% (p<0.05). Continuous infusion of dendritic cells-cytokine induced killer cells was associated with improvement of both patient status and cellular immunity. A median of six infusions were capable of reducing risk of progression by 70% (95%CI 0.10-0.91). Every elevation of one ECOG score corresponded to a 3.90-fold higher progression risk (p<0.05) and 1% increase of $CD8^+CD28^-$ T cell proportion reflecting a 5% higher risk of progression (p<0.05). Conclusions: In advanced cancer patients, continuous dendritic cell-cytokine induced killer cell infusions are capable of recovering cellular immunity, improving patient status and quality of life in those who are unresponsive to conventional cancer treatment.

Mutation spectra induced by 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide in the supF gene of human XP-A fibroblasts

  • Kim, Byung-Wook;Kim, Byung-Chun;Cha, Jin-Soon;Pfeifer, Gerd P.;Lee, Chong-Soon
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.604-608
    • /
    • 2008
  • 1-Nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide are oxidative metabolites that are responsible for the mutagenicity of 1-nitropyrene. In this study, the mutation spectra induced by oxidative metabolites in human cells were determined using a shuttle vector assay. The mutation frequencies induced by 1-nitropyrene 9,10-oxide were 2-3 times higher than those induced by 1-nitropyrene 4,5-oxide. The base substitutions induced by 1-nitropyrene 4,5-oxide were $G{\rightarrow}A$ transitions, $G{\rightarrow}C$ transversions, and $G{\rightarrow}T$ transversions. In the case of 1-nitropyrene 9,10-oxide, $G{\rightarrow}A$ transitions, $G{\rightarrow}T$ transversions, $A{\rightarrow}G$ transitions and $G{\rightarrow}C$ transversions were observed. Most base substitution mutations induced by oxidative metabolites occurred at the guanine sites in the supF gene. These sequence-specific hot spots were commonly identified as 5'-GA sequences for both metabolites. On the other hand, the sequence-specific hot spots at the adenine sites were identified as 5'-CAC sequences for 1-nitropyrene 9,10-oxide. These results suggest that the oxidative metabolites of 1-nitropyrene induce sequence-specific DNA mutations at the guanine and adenine sites at high frequency.