• Title/Summary/Keyword: Sunshine influence

Search Result 64, Processing Time 0.026 seconds

Correlation between Meteorological Factors and Water Discharge from the Nakdong River Barrage, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(I) - 하구둑 방류량과 기상인자 -)

  • Park, San;Yaan, Han-Sam;Lee, In-Cheal;Kim, Hean-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We estirmted the yearly and monthly variation in discharge from the Nakdong River Barrage. We studied the total monthly discharge, the mean daily discharge, and the maximum daily discharge based on the observational discharge data for the 11-year period 1996-2006. We also examined the correlation between the discharge and the meteorologiml factors that influence the river inflow. The results from this study are as follows. (1) The total monthly discharge for 11 years at the Nakdong River Barrage was $224,576.8{\times}10^6\;m^3$: The daily maximum was in 2003, with $56,292.3{\times}10^6\;m^3$. The largest daily mean release discharges occurred in August with $52,634.2{\times}10^6\;m^3$ (23.4% of the year), followed by July and September in that order with 23.1 and 17%, respectively. (2) The monthly pattern of discharge could be divided into the flood season for the period July-September (discharge =$1000{\times}10^6\;m^3$/day), the normal season from April to June and October (discharge=$300{\times}10^6\;m^3$/day), and the drought season from December to March (discharge < $300{\times}10^6\;m^3$/day). (3) Periods of high temperature, low evaporation loss, and short sunshine duration produced a much higher discharge in general. Conditions of low rainfall and high evaporation loss, as was the rose in 2003, tended to reduce the discharge, but high rainfall and low evaporation loss tended to increase the discharge as it did in 200l. (4) The dominant wind directions during periods of high discharge were NNE (15.5%), SW and SSW (13.1%), S(12.1%), and NE (10.8%) This results show that it run bring on accumulation of fresh water when northern winds are dominant, and it run flow out fresh water toward offslwre when southern winds are dominant.

  • PDF

Influence of El Niño on the Production of Spring Kimchi Cabbage in South Korea (국내 노지 봄배추 생산량에 대한 엘니뇨 영향)

  • Shim, Kyo-Moon;Kim, Yongseok;Jung, Myung-Pyo;Kim, Ji-Won;Kang, Kee-Kyung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.330-336
    • /
    • 2018
  • El $Ni{\tilde{n}}o$ would cause extreme weather conditions, which would result in a negative impact on crop production. The objective of this study was to assess the impact of El $Ni{\tilde{n}}o$ on spring kimchi cabbabe production for the period from 1981- 2016 in South Korea. In this study, years with less than 1.0 Oceanic $Ni{\tilde{n}}o$ index were classified into non El $Ni{\tilde{n}}o$ years. The other years were classified as El $Ni{\tilde{n}}o$ years. The national average production of spring kimchi cabbage in El $Ni{\tilde{n}}o$ years ($3,800kg\;10a^{-1}$) tended to be less than that in non El $Ni{\tilde{n}}o$ years ($4,016kg\;10a^{-1}$). However, there was no significant differences (p = 0.078) in the production between these groups of years. The averaged production of spring kimchi cabbage of El $Ni{\tilde{n}}o$ end years ($3,707{\pm}331kg\;10a^{-1}$) was less than those of El $Ni{\tilde{n}}o$ start years and non El $Ni{\tilde{n}}o$ years by 186 and $309kg\;10a^{-1}$, respectively. Still, such difference was not significant statistically (p=0.127), either. In contrast, there were provinces where the production of spring kimchi cabbage had significant differences by El $Ni{\tilde{n}}o$ occurrence. For example, El $Ni{\tilde{n}}o$ end years had significantly less spring kimchi cabbage production than El $Ni{\tilde{n}}o$ start years and non El $Ni{\tilde{n}}o$ years in Gangwon (p=0.038) and Gyeongbuk (p=0.053) provinces. It appeared that differences in cabbage production resulted from short sunshine duration, which merits further analysis on the impact of extreme weather condtions during El $Ni{\tilde{n}}o$ years on crop production.

The Influence of Soil Characteristics and Sweet Potato (Ipomoea batatas L.) Varieties on Fiber Content (재배지역 토양특성과 고구마 품종의 섬유질 함량 차이)

  • Park, Won;Chung, Mi Nam;Lee, Hyeong-Un;Kim, Tae Hwa;Kim, Su Jung;Nam, Sang Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.172-179
    • /
    • 2022
  • Sweet potato varieties with high fiber content in the storage root have poor texture when steamed or roasted. This study investigates the difference in fiber content among sweet potato varieties by soil and climate. The average fiber content of 'Hogammi', 'Sodammi', 'Pungwonmi', 'Danjami', and 'Jinyulmi' cultivars from the samples collected at farms in Haenam, Muan, and Unbong, Korea were 95.71, 66.73, 44.55, 40.55, and 38.53 mg/100g FW, respectively. There was no significant difference between site-specific conditions and varieties. Based on the degree of visual fibrousness, 'Hogammi' has an average of 3.6-4.0 with many thick stringy fibers. The fiber content of the 'Hogammi' cultivar was measured across 19 sites representing the main sweet potato growing regions of Korea. The fiber content was between 115.82 and 114.6 mg/100g in Haenam 2 and Boryeong 1, and 87.46 mg/100g in Hamyang. However, the fiber content at the remaining 16 sites was within the range of 94.63-108.52 mg/100g, although there were some site-level differences. The fiber content of the sweet potato storage roots were positively correlated with soil phosphorus (R2 = 0.58**), organic matter (R2 = 0.52*), and pH (R2 = 0.51*), which had a significance of 1% and 5%. The fiber content of sweet potato storage roots was found to have increased with increasing phosphorus content, organic matter and pH in the soil. However, there was no correlation with the amount of precipitation, days of precipitation and hours of sunshine with the fiber content of sweet potato at the selected sites.

Upper Boundary Line Analysis of Rice Yield Response to Meteorological Condition for Yield Prediction I. Boundary Line Analysis and Construction of Yield Prediction Model (최대경계선을 이용한 벼 수량의 기상반응분석과 수량 예측 I. 최대경계선 분석과 수량예측모형 구축)

  • 김창국;이변우;한원식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.241-247
    • /
    • 2001
  • Boundary line method was adopted to analyze the relationships between rice yield and meteorological conditions during rice growing period. Boundary lines of yield responses to mean temperature($T_a$) and sunshine hour( $S_{h}$) and diurnal temperature range($T_r$) were well-fitted to hyperbolic functions of f($T_a$) =$$\beta$_{0t}$(1-EXP(-$$\beta$_{1t}$ $\times$ ($T_a$) ) and f( $S_{h}$)=$$\beta$_{0t}$((1-EXP($$\beta$_{1t}$$\times$ $S_{h}$)), to quadratic function of f($T_r$) =$\beta$$_{0r}$(1-($T_r$ 1r)$^2$), respectively. to take into account to, the sterility caused by low temperature during reproductive stage, cooling degree days [$T_c$ =$\Sigma$(20-$T_a$] for 30 days before heading were calculated. Boundary lines of yield responses to $T_c$ were fitted well to exponential function of f($T_c$) )=$\beta$$_{0c}$exp(-$$\beta$_{1c}$$\times$$T_c$ ). Excluding the constants of $\beta$$_{0s}$ from the boundary line functions, formed are the relative function values in the range of 0 to 1. And these were used as yield indices of the meteorological elements which indicate the degree of influence on rice yield. Assuming that the meteorological elements act multiplicatively and independently from each other, meteorological yield index (MIY) was calculated by the geometric mean of indices for each meteorological elements. MIY in each growth period showed good linear relationship with rice yield. The MIY's during 31 to 45 days after transplanting(DAT) in vegetative stage, during 30 to 16 days before heading (DBH) in reproductive stage and during 20 days after heading (DAH) in ripening stage showed greater explainablity for yield variation in each growth stage. MIY for the whole growth period was calculated by the following three methods of geometric mean of the indices for vegetative stage (MIVG), reproductive stage (HIRG) and ripening stage (HIRS). MI $Y_{I}$ was calculated by the geometric mean of meteorological indices showing the highest determination coefficient n each growth stage of rice. That is, (equation omitted) was calculated by the geometric mean of all the MIY's for all the growth periods devided into 15 to 20 days intervals from transplanting to 40 DAH. MI $Y_{III}$ was calculated by the geometric mean of MIY's for 45 days of vegetative stage (MIV $G_{0-45}$ ), 30 days of reproductive stage (MIR $G_{30-0}$) and 40 days of ripening stage (MIR $S_{0-40}$). MI $Y_{I}$, MI $Y_{II}$ and MI $Y_{III}$ showed good linear relationships with grain yield, the coefficients of determination being 0.651, 0.670 and 0.613, respectively.and 0.613, respectively.

  • PDF