• Title/Summary/Keyword: Sunflower seed

Search Result 71, Processing Time 0.03 seconds

Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

  • Gao, Wei;Chen, Aodong;Zhang, Bowen;Kong, Ping;Liu, Chenli;Zhao, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.485-493
    • /
    • 2015
  • This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen microorganisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

Studies on Pythium spp. in Korea -(I) Preliminary taxonomic and physiological studies- (한국(韓國)의 Pythium spp. 에 관(關)한 연구(硏究) -(I) 분류(分類) 및 생화학적(生理學的) 기초연구(基礎硏究)-)

  • Lee, Eung-Kwon;Lee, Young-Hee;Yoo, Jae-Dang;Long, Peter G.
    • The Korean Journal of Mycology
    • /
    • v.3 no.2
    • /
    • pp.7-12
    • /
    • 1975
  • Three species of Pythium previously not recorded in Korea were found during 1975. Pythium spinosum Sawada was isolated from diseased cabbage seedlings, P. myriotylum Dreschl. was isolated from kidney bean and P. butleri Subramanium from cucumber, spinach, red bean and radish. Pathogenicity of isolates of P. butleri and P. myriotylum was confirmed in pathogenicity tests but P. spinosum appeared to be non-pathogenic. Several isolates failed to sporulate satisfactorily on cornmeal agar and some produced degenerate oogonia after sub-culturing on this medium. Sunflower seed agar was found to be a suitable alternative medium. The validity of previous records of P. debaryanum Hess in Korea is discussed.

  • PDF

A PCR Method for Rapid Detection of Peanut Ingredients in Food (식품에서 땅콩 성분의 신속검출을 위한 PCR 방법)

  • Lee, Su-Jin;Yoon, Jang-Ho;Hong, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.350-353
    • /
    • 2009
  • Peanut (Arachis hypogaea) often causes severe allergic reactions in sensitive people. Agglutinin is known to be one of the allergenic proteins in peanut. A polymerase chain reaction (PCR) method was developed to detect peanut ingredients in food using a primer pair corresponding to the agglutinin gene. This primer pair enabled PCR amplification of specific regions of agglutinin DNA from peanut, but not from 11 other nuts, beans, and cereals (pistachio, almond, sunflower seed, pine nut, walnut, soybean, black bean, kidney bean, azuki bean, rice, and black rice). The proposed PCR method successfully identified all of the 6 processed foods containing peanut whereas 13 other processed foods, which don't declare peanuts as an ingredient, were all negative. The detection limit of this method for purified peanut DNA was 100 pg/reaction. The sensitivity of this method was sufficient to detect peanut DNA in soybean DNA mixture which had been spiked with 0.1% peanut DNA.

Isolation and Characterization of Lipoxygenase-producing Bacteria for Industrial Applications (산업적 응용을 위한 Lipoxygenase 생산 세균의 분리 및 특성)

  • Kim, Yerin;Park, Gyulim;Kim, Yedam;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.265-274
    • /
    • 2022
  • Lipoxygenase is an enzyme, mainly produced by plants, capable of converting unsaturated fatty acids to fatty acids. It has vast application potential in the food, pharmaceutical and agricultural industries. The aim of this study was to isolate novel lipoxygenase-producing bacteria from the environment and to investigate the lipoxygenase enzymatic properties for industrial production. The strain, NC1, isolated from cultivation soils, was identified as Bacillus subtilis based on the phenotypic characteristics and 16S rRNA gene sequencing. This strain formed a pink color around the colony when cultured on indamine dye formation plates. The production of lipoxygenase by B. subtilis NC1 was influenced by the composition of the medium and linoleic acid concentrations. The optimum temperature and pH for lipoxygenase activity was determined to be 40 ℃ and pH 6, respectively. The enzyme showed relatively high stability at temperatures ranging from 20-50 ℃ and acid-neutral regions. In addition, the lipoxygenase produced by B. subtilis NC1 was able to degrade commercially available oils including sunflower seed oil and Perilla oil. In this study, a useful indigenous bacterium was isolated, and the fundamental physicochemical data of bacterial lipoxygenase giving it industrial potential are presented.

Characteristics of Flavor Reversion in Seasoning Oil using Sunflowerseed Meal (해바라기박을 이용한 향미유의 변향특성)

  • Koo, Bon-Soon;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.6
    • /
    • pp.808-812
    • /
    • 2007
  • Seasoning oils(SO) were manufactured by direct fire method(DFM) and autoclaving method(AM) using sunflower seed meal. The SO manufactured by DFM is stronger than that by AM for Lovibond color and flavor strength. The flavor strength of 2 kinds SOs were lower than sesame oil as a control group. But acid value of SOs were superior than sesame oil, 0.452, 0.463 and 1.987, respectively. The level of Lovibond color for 2 kinds of sample seasoning oil was similar. Composition and contents of total volatile flavor components were determined from their essential oils of sesame oil and 2 kinds sample seasoning oils. As a result, total volatile flavor contents of sesame oil was 1,300.6 ppm, and that of seasoning oil samples were 697.8 ppm, 648.2 ppm, respectively. Major volatile flavor components of seasoning oil were 2-butanone, hexanal, methyl pyrazine etc. In contrast, major volatile flavor component of sesame oil was pyrazines, but that was not a major component of 2 kinds of sample seasoning oils.

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.

Analysis of Major Phytosterol Contents for 10 Kind of Vegetable Oils (식물성 유지 10종에 대한 주요 Phytosterol 함량 분석)

  • Cho, Sang-Hun;Lee, Myung-Jin;Kim, Ki-Yu;Park, Geon-Yeong;Kang, Suk-Ho;Um, Kyoung-Suk;Kang, Hyo-Jeong;Park, Yong-Bae;Yoon, Mi-Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.2
    • /
    • pp.217-223
    • /
    • 2021
  • Vegetable oils are a rich source of bioactive substances. Phytosterols in those have been known for many years for their properties for reducing blood cholesterol levels, as well as their other beneficial health effects. Phytosterols are triterpenes that are important structural components of plant cell membranes just as cholesterol does in animal cell membranes. The aim of this study was to provide consumers with information about phytosterol contents in vegetable oils in Korea market. The contents of major phytosterols (campesterol, stigmasterol, β-sitosterol) in 50 vegetable oils of 10 kinds (perilla oil, peanut oil, avocado oil, olive oil, pine nut oil, sesame oil, canola oil, coconut oil, grape seed oil, and sunflower oil) were analyzed by gas chromatography with flame ionization detector. The average contents of vegetable oils containing 5 or more samples were in the order of sesame oil (334.43 mg/100 g), perilla oil (262.16 mg/100 g), grape seed oil (183.71 mg/100 g), and olive oil (68.68 mg/100 g). Phytosterol content of sesame oil and perilla oil was high among vegetable oils.

Control of Powdery and Downy Mildews of Cucumber by Using Cooking Oils and Yolk Mixture

  • Jee, Hyeong-Jin;Shim, Chang-Ki;Ryu, Kyung-Yul;Park, Jong-Ho;Lee, Byung-Mo;Choi, Du-Hoe;Ryu, Gab-Hee
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.280-285
    • /
    • 2009
  • Powdery and downy mildews caused by Sphaerotheca fusca and Pseudoperonospora cubensis are the most common and serious diseases of cucumber worldwide. In spite of the introduction of highly effective systemic fungicides, control of these diseases remains elusive. Hence, this study aimed to develop an alternative method to chemicals in controlling the diseases by using different types of cooking oil. Egg yolk, which contains a natural emulsifier, lecithin, was selected as a surfactant to emulsify the oils. Among the different cooking oils used, soybean, canola (rape seed), safflower, sunflower, olive, and corn oils showed over 95% control values against powdery mildew of cucumber in a greenhouse test. In particular, 0.3% canola oil emulsified with 0.08% yolk (1 yolk and 60 ml canola in 20 l spray) was found to be the most effective. The treatment resulted in 98.9% and 96.3% control efficacies on powdery and downy mildews, respectively, of cucumber in the field. Canola oil exhibited direct and systemic effect, wherein powdery mildew of cucumber was suppressed only on treated leaves but not on non-treated leaves in a plant, while mycelia and conidia of the pathogen were severely distorted or destroyed by the treatment. The prospect of using the canola oil and yolk mixture as a natural fungicide is highly promising because of its effectiveness, availability, low cost, simple preparation, and safety to humans and the environment. The use of the canola oil and yolk mixture is expected to be an effective fungicide for use in organic farming and home gardening.

The Effect of Protein Source and Formaldehyde Treatment on Growth and Carcass Composition of Awassi Lambs

  • Abdullah, A.Y.;Awawdeh, F.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1080-1087
    • /
    • 2004
  • A trial with twenty-four newly weaned Awassi lambs (initial body weight=21.5$\pm$0.8 kg) was conducted using a 3$\times$2 factorial design to study the effect of feeding three sources of protein supplements (soybean meal (SBM), sunflower seed meal (SSM), and cottonseed meal (CSM)), either untreated or formaldehyde-treated on the growth performance and carcass traits of Awassi lambs. Lambs were randomly assigned to one of the six diets (4 lambs/treatment diet) and were individually fed for a period of 107 days. Experimental diets were isonitrogenous and isocaloric. Final live weight and average daily gain (ADG) were affected by both source of protein and formaldehyde treatment (undegradable protein). Lambs fed untreated diets had better (p<0.01) daily gain compared to those fed formaldehyde-treated diets. Similarly total feed intake per animal was significantly (p<0.05) affected by protein source and formaldehyde treatment. Formaldehyde treatment caused a significant decrease (p<0.01) in feed intake compared to lambs fed untreated diets. Feed requirement per unit of gain was not affected by formaldehyde treatment during all periods of the experiment except for the second period (the second 28 day period), whereby untreated SBM, SSM and CSM had better feed conversion ratio (FCR) than the treated groups. Source of protein had a moderate effect (p<0.10) on FCR but had a significant effect (p<0.05) on hot and cold carcass weight, digestive tract empty weight and liver weight, with lambs fed SBM having higher values than lambs fed SSM and CSM diets. Supplementation with undegradable protein had a significant effect (p<0.05) on dressing-out percentage (p<0.05), final live weight, and hot and cold carcass weight (p<0.01). The lower values pertain to lambs fed treated diets compared to lambs fed untreated diets. In general, there were no significant differences among all carcass linear dimensions, carcass cut weights and dissected loin tissue weights for both treatments (protein source and formaldehyde treatment). Supplementation with undegradable protein but not the source of protein resulted in significantly higher dissected leg total bone weight (p<0.05), tibia and femur weight (p<0.05), and femur length (p<0.01) at the same carcass weight. Results suggest that the treatment of SBM, SSM and CSM with formaldehyde did not improve efficiency of feed utilization, lamb performance or carcass traits and that the SBM diet resulted in an increase in lamb performance compared to other experimental diets.

Analysis of Phenolic Substances Content in Korean Plant Foods (국내산 식물성 식품중 페놀성 물질의 함량 분석)

  • Lee, Jung-Hi;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.310-316
    • /
    • 1994
  • The phenolic substances contents of 45 plant foods in Korean diet were determined by different methods. Total phenolics contents by Folin-Denis method were $0.1{\sim}5.8%$ (dry matter basis), in which persimmon leaf, chestnut's inner skin, Chinese quince, walnut, sunflower seed and arrowroot exhibited the higher levels above 2%. Condensed tannin contents by vanillin method were $0{\sim}48%$, in which Chinese quince and chestnut's inner layer gave very high levels. Protein-precipitable phenolic substances ranged from 0.4% to 2.2%, in which chestnut's inner layer, walnut and Chinese quince had the highest content. The ability of phenolics to form precipitate was higher with pepsin and albumin than with trypsin. Among different phenolics content, total phenlolics correlated significantly with protein-precipitable phenolics (r=0.65) and condensed tannin (r=0.56). Chinese quince, chestnut's inner skin and sorghum showed a relatively lower degree of polymerization, as expressed by vanillin/FolinDenis ratio. Processed foods from buckwheat, acorn, mugwort and arrowroot showed a lower content of phenolic substances, suggesting a negligible adverse effect on the bioavailability of food proteins, if any.

  • PDF