• Title/Summary/Keyword: Sun photometer

Search Result 19, Processing Time 0.019 seconds

MODIS AEROSOL RETRIEVAL IN FINE SPATIAL RESOLUTION FOR LOCAL AND URBAN SCALE AIR QUALITY MONITORING APPLICATIONS

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.378-380
    • /
    • 2005
  • Remote sensing of atmospheric aerosol using MODIS satellite data has been proven to be very useful in global/regional scale aerosol monitoring. Due to their large spatial resolution of $10km^2$ MODIS aerosol optical thickness (AOT) data have limitations for local/urban scale aerosol monitoring applications. Modified Bremen Aerosol Retrieval (BAER) algorithm developed by von Hoyningen-Huene et al. (2003) and Lee et al. (2005) has been applied in this study to retrieve AOT in fe resolutions of $500m^2$ over Korea. Look up tables (LUTs) were constructed from the aerosol properties based on sun-photometer observation and radiation transfer model calculations. It was found that relative error between the satellite products and the ground observations was within about $15\%$. Resulting AOT products were correlated with surface PMIO concentration data. There was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for local and urban scale air quality monitoring

  • PDF

Spin Axis Determination of Defunct GLONASS Satellites Using Photometry Observation

  • Lee, Jeeho;Park, Eunseo;Choi, Man-Soo;Kucharski, Daniel;Yi, Yu;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.45-53
    • /
    • 2021
  • GLONASS, a satellite navigation system developed in Russia since 1976, is defunct and orbits in an unstable attitude. The satellites in these problems are not managed and there is no precise information, which can increase the risk of collisions with other space objects. In this study, detailed attitude dynamic have to be analyzed through photometry data, which requires spin period and spin axis. The light curve data is obtained by observing through the photometer at the Graz station and the power spectrum is calculated to obtain the cycle of the satellite. The geometric relationship between observer and sun is analyzed for GLONASS-50 satellite. The box-wing model is applied to obtain the phase reflection of the satellite and obtain the Irradiation of the satellite through this information. In Light Curve and Irradiation, the spin axis is calculated for each peak points with the distance square minimum technique. The spin axis of the GLONASS-50 satellite is RA = 116°, Dec = 92°.

Design of Ultrasonic Nebulizer for Inhalation Toxicology Study of Cadmium with Application of Engineering Methodology and Performance Evaluation with Light-Scattering Photometer (공학적 기법을 응용한 카드뮴의 흡입독성 연구를 위한 초음파 네뷸라이져의 설계 그리고 광산란 광도계를 이용한 성능평가)

  • Jeung Jae Yeal;Milton Donald K.;Kim Tae Hyeung;Lee Jong Young;Chong Myoung Soo;Ko Kwang Jae;Kim Sang Duck;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.464-471
    • /
    • 2002
  • Author applied several engineering methodologies to classical ultrasonic nebulizer to cope with it's demerits. After several trials and errors, we got the several meaningful results. To evaluate the modified ultrasonic nebulizer for inhalation toxicology of cadmium, author used light-scattering photometer. This paper is the one part of inhalation exposure systems for inhalation toxicology study of cadmium. According to the testing conditions, source temperature 50℃ and inlet-duct band temperature 150℃, aerosol generation results for sodium chloride and cadmium chloride were as followings: Coefficients of variation(CV) of sodium chloride and cadmium chloride for repeated trials were 3.38 and 4.77 for 10g, 2.47 and 5.02 for 5g, and 4.70 and 2.98 for 2.5g. All the CVs were within 10% of acceptance variability. Count Per Minute(CPM) changes of NaCl and CdCl₂ for 5 repeated trials were similar. CPM ratios of CdCl₂/NaCl were 1.13 for 10g, 0.76 for 5g, and 1.06 for 2.5g. Relative aerosol generation of cadmium chloride to sodium chloride was the highest in 10g. Efficiency increases of 24.50% for 5g NaCl, 14.91 % for 2.5g NaCl, and 16.48% for 2.5g CdCl₂ with respect to theoretical efficiency were observed but 0.04% efficiency decrease was observed in 5g CdC₂. According to the modifications of source temperature(20, 50, 70℃) and inlet-duct band temperature(20, 50, 100, 150, 200℃), aerosol generation results for NaCl and CdCl₂ were as followings: CPM trends for each quantity excepting 10g NaCl in inlet-duct band temperature 200℃ were similar, and the highest CPM was observed in source temperature 70℃ to each inlet-duct band temperature. The highest CPMs to 10, 5, and 2.5g NaCl were observed in source temperature 70℃ and inlet-duct band temperature 20℃. Aerosol generation of cadmium chloride was increased with the higher source temperature, excepting inlet-duct band temperature 200℃. The highest CPMs for 10, 5, and 2.5g CdCl₂ were observed in source temperature 70℃ and inlet-duct band temperature 20℃, and this trend was similar to NaCl aerosol generation The highest CPMs for 10, 5, and 2.5g CdCl₂ were observed in source temperature 70℃ and inlet-duct band temperature 20℃, and this result was similar to NaCl aerosol generation. Observed efficiencies of 5 and 2.5g NaCl were similar to ifs theoretical efficiency but -3.08% efficiency decrease of 5g CdCl₂, 17.47% efficiency increase of 2.5g CdCl₂ were observed. CPM ratio of CdCl₂/NaCl of 10g was different to 5 and 2.5g, and 2.5g ratio was higher than 5g ratio. In conclusion, to get maximum aerosol generation for NaCl and CdCl₂ will be the conditions that set the appropriate inlet-duct band temperature for each materials and increase the source temperature. Sodium chloride can be used to evaluate the performance and predict the concentration for cadmium aerosol in aerosol generator and inhalation exposure system.

Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan (서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화)

  • Lee, S.;Ghim, Y.S.;Kim, S.W.;Yoon, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

Identification of the Trace Evidence by UV/VIS Microspectrophotometry (현미 자외/가시광선영역 분광광도계에 의한 미세시료의 분석)

  • Shon, Sung-Kun;Park, Ha-Sun;Lee, Jin-Sook;Park, Sung-Woo;Cho, Sung-Hye
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.250-257
    • /
    • 2000
  • Paint, fiber and dye which play a critcal role in proving the relationship between a suspect and a victim or a crime scene, are one of the most frequently encountered trace evidences at a forensic laboratory, however, in usual, because of infinitesimally small sizes of forensic samples, investigation of the spectroscopic characteristics of such samples is becomming more and more prevalent in forensic science as a non-destructive method. In this study, transmittance/reflectance profiles at ultraviolet-visible region (240-780nm), were investigated by UV/visible microspectro- photometer and used to analyze the spectral characteristics of different types of 14 microfibers, 12 inks of four colors and 44 automotive paints of two colors. Good results for discrimination were given from spectra of these samples due to the characteristic bands in uv/vis region, respectively.

  • PDF

Retrieval of Atmospheric Optical Thickness from Digital Images of the Moon (월면 디지털 영상 분석을 이용한 대기 광학두께 산출)

  • Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.555-568
    • /
    • 2013
  • Atmospheric optical thickness during nighttime was estimated in this study using analysis on the images of the moon taken from commercial digital camera. Basically the Langely Regression method was applied to the observations of the moon for the cloudless and optically stable sky conditions. The spectral response functions for the red(R), green(G), and blue(B) channels were employed to derive effective wavelength centers of each channel for the observations of the moon, and the correspondent Rayleigh optical thickness were also calculated. Aerosol optical thickness (AOT) was calculated by subtracting Rayleigh optical thickness from the atmospheric optical thickness derived from the Langley regression method. As there are only handful of nighttime AOT observations, the AOT from the moon observations was compared with the AOT from sun-photometers and the MODIS satellite sensor, which was taken several hours before the moon observations of this study. As a result, the values of AOT from moon observations agree with those from sun-photometers and MODIS within 0.1 for the R, G, B channels of the digital camera. On the other hand, ${\AA}$ngstr$\ddot{o}$m Exponent seems to be subject to larger errors due to its sensitiveness to the spectral errors of AOT. Nevertheless, the results of this study indicate that the method reported in this study is promising as it can provide nighttime AOT relatively easily with a low cost instrument like digital camera. More observations and analyses are warranted to attain improved nighttime AOT observations in the future.

A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3 (우리나라에서 AERONET 태양광도계 자료를 이용한 다종위성 AOD 산출물 비교평가: MODIS, VIIRS, Himawari-8, Sentinel-3의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Youn, Youjeong;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.543-557
    • /
    • 2021
  • Because aerosols have different spectral characteristics according to the size and composition of the particle and to the satellite sensors, a comparative analysis of aerosol products from various satellite sensors is required. In South Korea, however, a comprehensive study for the comparison of various official satellite AOD (Aerosol Optical Depth) products for a long period is not easily found. In this paper, we aimed to assess the performance of the AOD products from MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, and Sentinel-3 by referring to the AERONET (Aerosol Robotic Network) sun photometer observations for the period between January 2015 and December 2019. Seasonal and geographical characteristics of the accuracy of satellite AOD were also analyzed. The MODIS products, which were accumulated for a long time and optimized by the new MAIAC (Multiangle Implementation of Atmospheric Correction) algorithm, showed the best accuracy (CC=0.836) and were followed by the products from VIIRS and Himawari-8. On the other hand, Sentinel-3 AOD did not appear to have a good quality because it was recently launched and not sufficiently optimized yet, according to ESA (European Space Agency). The AOD of MODIS, VIIRS, and Himawari-8 did not show a significant difference in accuracy according to season and to urban vs. non-urban regions, but the mixed pixel problem was partly found in a few coastal regions. Because AOD is an essential component for atmospheric correction, the result of this study can be a reference to the future work for the atmospheric correction for the Korean CAS (Compact Advanced Satellite) series.

Preparation and Characterization of Cy5.5-conjugated Biocompatible Polymeric Micellar Nanoparticles for Optical Imaging (광학 영상을 위한 Cy5.5가 결합된 생체적합성 고분자 마이셀 나노입자의 제조 및 특성분석)

  • Kim, Hyo-Jeong;Kim, Byung-Jin;Lee, Ha-Yeong;Jung, Suk Hyun;Jeong, Seo-Young;Yuk, Soon-Hong;Shin, Byung-Cheo;Seong, Ha-Soo;Choi, Youn-Woong;Ha, Dae-Chul;Choi, Sun-Hang;Lee, Soo-Min
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.393-400
    • /
    • 2009
  • PHEA (hydroxyethyl-aspartamide)-mPEG (methoy-polyethyleneglycol)-$C_{16}$ (hexadecylamine)-ED (ethylenediamine) was prepared as a drug delivery carrier. The structure and molecular weight of polymers were characterized by $^1H$-NMR and gel permeation chromatography. Micelle size and shape were measured by electro-photometer light scattering and transmission electron microscope. The mean diameter of micelles was 23 nm in aqueous solution. To evaluate the potential of these polymeric micelles as a drug carrier, PSI-mPEG-$C_{16}$-ED was conjugated with Cy5.5 for Near-Infrared Fluorescent (NIRF) based optical imaging. PSI-mPEG-$C_{16}$-ED-Cy5.5 was injected intravenously into mice (n=5) and in vivo NIRF imaging was performed during 48 h after injection. The biodistribution study at 24 h after injection showed the longcirculation property of PSI-mPEG-$C_{16}$-ED-Cy5.5. Therefore, PSI-mPEG-$C_{16}$-ED micelles could be a promising drug carrier and imaging agent.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.