• Title/Summary/Keyword: Sun:atmospheric motions

Search Result 4, Processing Time 0.017 seconds

RESPONSES OF THE TRANSITION REGION TO DOWNWARD AND UPWARD FLOWS

  • YUN H. S.;CHAE J.-C.;POLAN A. I.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.339-340
    • /
    • 1996
  • In the present study we examine physical characteristics of a thin and rigid magnetic flux tube with a steady flow inside, which is embedded vertically upward in the solar atmosphere. We found from this study that (1) The downward material flow gives rise to a dominant heating in the flux tube which works with the conductive heating in the same direction. However, the upflow flow creates a dominant cooling which works against the conductive heating, resulting in a steeper temperature gradient with a shallower transition region. (2) Since the thickness of the transition region determines the material content in the transition region, a broader transition region of the downflow tube produces a larger differential measure.

  • PDF

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Chae, Jong-Chul;Park, Hyung-Min;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.67-82
    • /
    • 2007
  • The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

ESTIMATION OF ERRORS IN THE TRANSVERSE VELOCITY VECTORS DETERMINED FROM HINODE/SOT MAGNETOGRAMS USING THE NAVE TECHNIQUE

  • Chae, Jong-Chul;Moon, Yong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.61-69
    • /
    • 2009
  • Transverse velocity vectors can be determined from a pair of images successively taken with a time interval using an optical flow technique. We have tested the performance of the new technique called NAVE (non-linear affine velocity estimator) recently implemented by Chae & Sakurai using real image data taken by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite. We have developed two methods of estimating the errors in the determination of velocity vectors, one resulting from the non-linear fitting ${\sigma}_{\upsilon}$ and the other ${\epsilon}_u$ resulting from the statistics of the determined velocity vectors. The real error is expected to be somewhere between ${\sigma}_{\upsilon}$ and ${\epsilon}_u$. We have investigated the dependence of the determined velocity vectors and their errors on the different parameters such as the critical speed for the subsonic filtering, the width of the localizing window, the time interval between two successive images, and the signal-to-noise ratio of the feature. With the choice of $v_{crit}$ = 2 pixel/step for the subsonic filtering, and the window FWHM of 16 pixels, and the time interval of one step (2 minutes), we find that the errors of velocity vectors determined using the NAVE range from around 0.04 pixel/step in high signal-to-noise ratio features (S/N $\sim$ 10), to 0.1 pixel/step in low signa-to-noise ratio features (S/N $\sim$ 3) with the mean of about 0.06 pixel/step where 1 pixel/step corresponds roughly to 1 km/s in our case.

Merging and Splitting of Coronal Holes through a Solar Cycle

  • Jang, Min-Hwan;Choe, G.S.;Hong, Sun-Hak;Woods, Tom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.99-99
    • /
    • 2011
  • A statistical study of coronal hole merging and splitting has been performed through Solar Cycle 23. The NOAA/SESC solar synoptic maps are examined to identify inarguably clear events of coronal hole merging and splitting. The numbers of merging events and splitting events are more or less comparable regardless of the phase in the solar cycle. The number of both events, however, definitely shows the phase dependence in the solar cycle. It apparently has a minimum at the solar minimum whereas its maximum is located in the declining phase of the sunspot activity, about a year after the second peak in Solar Cycle 23. There are more events of merging and splitting in the descending phase than in the ascending phase. Interestingly, no event is found at the local minimum between the two peaks of the sunspot activity. This trend can be compared with the variation of the average magnetic field strength and the radial field component in the solar wind through the solar cycle. In Ulysses observations, both of these quantities have a minimum at the solar minimum while their maximum is located in the descending phase, a while after the second peak of the sunspot activity. At the local minimum between the two peaks in the solar cycle, the field strength and the radial component both have a shallow local minimum or an inflection point. At the moment, the physical reason for these resembling tendencies is difficult to understand with existing theories. Seeing that merging and splitting of coronal holes are possible by passage of opposite polarity magnetic structures, we may suggest that the energizing activities in the solar surface such as motions of flux tubes are not exactly in phase with sunspot generation, but are more active some time after the sunspot maximum.

  • PDF