• Title/Summary/Keyword: Sun: calibration

Search Result 318, Processing Time 0.036 seconds

In-Process Relative Robot WorkCell Calibration

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.269-272
    • /
    • 2003
  • Industry is now seeing a dramatic increase in robot simulation and off-line programming. In order to use off-line programming effectively, the simulated workcell has to be identical to the real workcell. This requires an efficient and accurate method for the workcell calibration. Currently used techniques in the industry, however, are typically time-consuming, expensive and therefore not suitable for in-process application. This is because most of these techniques are based on the so-called “absolute calibration” method. In contrast to absolute method, relative calibration only measures the difference of an interested object relative to a standard reference. Owing to the small measurement range requirement, relative calibration method is very cheap and can achieve very high accuracy. In this paper the relative method is applied to calibrate an entire grinding workcell. Linear gauge is the only measurement device used. This workcell calibration includes tool center point (TCP) calibration and work object frame calibration. Due to the efficiency of the calibration algorithm and the simplicity of the calibration setup, the described calibration procedure can be done in process.

  • PDF

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

A Novel Calibration Method Using Zadoff-Chu Sequence and Its FPGA Implementation (Zadoff-Chu sequence를 이용한 실시간 Calibration 알고리즘과 FPGA 구현)

  • Jang, Jae Hyun;Sun, Tiefeng;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.59-65
    • /
    • 2013
  • This paper presents a novel calibration method for a base station system adopting an antenna array. The proposed technique utilizes Zadoff-Chu sequence, which is included in the LTE pilot signal periodically, in order to compute the phase characteristic of each antenna channel. As the Zadoff-Chu sequence exhibits an excellent autocorrelation characteristic, it is possible for the receiving base station to retrieve the Zadoff-Chu sequence transmitted from each mobile terminal. In addition, we can obtain the phase characteristic of each antenna channel, which is the ultimate goal of the calibration procedure. The proposed calibration algorithm has been implemented using an FPGA (Field Programmable Gate Array). We have applied the proposed algorithm to an array consisting of 2 antenna elements for simplicity. the phase value implied to the first and second antenna path is very accurately calculated from the proposed procedure. From the experimental test, the proposed method provides accurate calibration results.

Development and Application of Calibration Interval Analysis Program for Measurement Quality and Reliability Improvement (측정 품질과 신뢰도 향상을 위한 교정주기 분석 프로그램의 개발 및 응용)

  • Park, Byoung-Sun;Ahn, Ung-Hwan;Cho, Joong-Jae
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.1
    • /
    • pp.54-72
    • /
    • 2006
  • In recent years, the widespread application of quality management and measurement reliability has put increasing emphasis on procedures for periodic instrument calibration. By optimizing calibration intervals, unnecessary calibrations can be minimized, thereby reducing costs. Moreover, optimizing intervals will improve compliance with regulatory directives while ensuring maximal compliance with reliability targets. In this paper, we present Calibration Interval Analysis Program developed using several establishment methodologies of calibration interval for measurement quality and reliability improvement. Also, we perform calibration interval analysis for some measurement instruments and analyse its results.

On-Orbit AOCS Sensor Calibration of Spacecraft (인공위성의 궤도상에서 자세제어계 센서 보정)

  • Yong, Gi-Ryeok;Lee, Seon-Ho;O, Si-Hwan;Bang, Hyo-Chung;Lee, Seung-U
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.90-101
    • /
    • 2006
  • In this paper, the calibration parameters of the gyros and star hackers are estimated by using an on-orbit AOCS sensor calibration algorithm. The calibration algorithm was implemented by Kalman filter. In order to estimate gyro calibration parameters, the calibration algorithm requires calibration maneuver and it was analyzed whether the star trackers are protected by Sun, Moon and Earth or not. Also the star tracker calibration algorithm used the camera image information. This kinds of camera image information simulated ground control point and orbit information. The estimated accuracy of star tracker calibration parameters depends on camera image information.

  • PDF

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

ABSOLUTE RADIOMETRIC CALIBRATION OF 1M SATELLITE IMAGERY

  • Lee Sun-Gu;Lee Dong-han;Seo Doo-chun;Song Jeong Heon;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.616-619
    • /
    • 2005
  • CALNAL team of Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration of 1m satellite image on Daejeon and the cal/val site of Goheung. The satellite image have spatial resolution of 1m in panchromatic spectral band of 450-900nm. The performed cal/val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data used only to test in Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance estimate. Derived TOA is compared with DN of overpass satellite to calculate calibration coefficient of gain and offset.

  • PDF

Examination of Cross-calibration Between OSMI and SeaWiFS: Comparison of Ocean Color Products

  • Lee, Sun-Gu;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.209-215
    • /
    • 2002
  • Much effort has been made in the radiometric calibration of the ocean scanning multispectral imager (OSMI) since after the successful launch of KOMPSAT-1 in 1999. A series of calibration coefficients for OSMI detectors were obtained in collaboration with the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary (SIMBIOS) project office. In this study, we compare the OSMI level-2 products (e.g., chlorophyll-a concentration) calculated from the NASA cross-calibration coefficients with the SeaWiFS counterparts. Sample study areas are some of diagonostic data sites recommended by the SIMBIOS working group. We will present the preliminary results of this comparative study.

  • PDF

Examination of Cross-calibration Between OSMI and SeaWiFS: Comparison of Ocean Color Products

  • Kim, Yong-Seung;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.201-208
    • /
    • 2003
  • Much effort has been made in the radiometric calibration of the ocean scanning multispectral imager (OSMI) since after the successful launch of KOMPSAT-1 in 1999. A series of calibration coefficients for OSMI detectors were obtained in collaboration with the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary (SIMBIOS) project office. In this study, we ompare the OSMI level-2 products (e.g., chorophyll-a concentration) calculated from the NASA cross-calibration coefficients with the SeaWiFS counterparts. Sample study areas are some of diagonostic data sites recommended by the SIMBIOS working group. Results of this study show that the OSMl-derived chlorophyll-a concentration agrees well with the SeaWiFS counterpart in Case 1 water; however, differences become larger in Case 2 water.

DEVELOPMENT OF ULTRA-LIGHT 2-AXES SUN SENSOR FOR SMALL SATELLITE

  • Kim, Su-Jeoung;Kim, Sun-Ok;Moon, Byoung-Young;Chang, Young-Keun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2005
  • This paper addresses development of the ultra-light analog sun sensors for small satellite applications. The sun sensor is suitable for attitude determination for small satellite because of its small, light, low-cost, and low power consumption characteristics. The sun sensor is designed, manufactured and characteristic-tested with the target requirements of ${\pm}60^{\circ}$ FOV (Field of View) and pointing accuracy of ${\pm}2^{\circ}$. Since the sun sensor has nonlinear characteristics between output measurement voltage and incident angle of sunlight, a higher order calibration equation is required for error correction. The error was calculated by using a polynomial calibration equation that was computed by the least square method obtained from the measured voltages vs. angles characteristics. Finally, the accuracies of 1-axis and 2-axes sun sensors, which consist of 2 detectors, are compared.