• Title/Summary/Keyword: Sun/Earth/Moon system

Search Result 48, Processing Time 0.022 seconds

SPECIAL CONSIDERATION ON THE RADARSAT REPEAT-PASS SAR INTERFEROMETRY

  • Kim, Sang-Wan;Won, Joong-Sun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.474-478
    • /
    • 1999
  • SAR interferometry (InSAR) using the space-borne Synthetic Aperture Radar (SAR) have recently become one of the most effective tools monitoring surface changes caused by landslides, earthquakes, subsidences or volcanic eruption. This study focuses on examining the feasibility of InSAR using the RADARSAT data. Although the RABARSAT SAR with its high resolution and variable incidence angle has several advantages for repeat-pass InSAR, it has two key limitations: first, the orbit is not precisely known; and second, RADARSAT's 24-day repeat pass interval is not very favourable for retaining useful coherence. In this study, two pairs of RADARSAT data in the Nahanni area, NWT, Canada have been tested. We will discuss about the special consideration required on the interferometric processing steps specifically for RADARSAT data including image co-registration, spectral filtering in both azimuth and range, estimation of the interferometric baseline, and correction of the interferogram with respect to the "flat earth" phase contribution. Preliminary results can be summarized as: i) the properly designed azimuth filter based upon the antenna characteristic improves coherence considerably if difference in Doppler centroid of the two images is relatively large; ii) the co-registration process combined by fringe spectrum and amplitude cross-correlation techniques results in optimal matching; iii) the baseline is not always possible to be estimated from the definitive orbit information.

  • PDF

An Implementation of Integrated Information and Communication Network of Oceanographic Research Vessels for Effective Ocean Investments (효율적 해양탐사를 위한 해양조사선의 종합정보 통신망 구현)

  • Park, Jong-Won;Choi, Young-Cheol;Kang, Jun-Sun;Lim, Yong-Kon;Kim, Sea-Moon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.330-335
    • /
    • 2003
  • This paper deals with the network interface of research and observation instruments in the oceanographic research vessel with an establishment of related database for measured information. The system is implemented to integrated communication network system which allows to effective survey by using real time observation and GUI(Graphic User Interface). The system also consists of the LAN systems and serial interface to link chemical, physical, biological and environmental relations. And, other network service and vessel data service for data communication between vessel and earth station such as INMARSAT-B, WWW service, BBS, E-Mail etc., are needed for integrated communication network system.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Development of the Earth Observation Camera of MIRIS

  • Lee, Dae-Hee;Han, Won-Yong;Park, Young-Sik;Park, Sung-Jun;Moon, Bong-Kon;Ree, Chang-Hee;Pyo, Jeong-Hyun;Jeong, Woong-Seob;Nam, Uk-Won;Lee, Duk-Hang;Park, Kwi-Jong;Bae, Soo-Ho;Rhee, Seung-Wu;Park, Jong-Oh;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Young-Ju
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • We have designed and manufactured the Earth observation camera (EOC) of multi-purpose infrared imaging system (MIRIS). MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM) of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned.

The Conceptions of Astronomical Distance of Elementary School Teachers (초등학교 교사들의 천문학적 거리에 대한 개념 연구)

  • Jeong, Jin-Woo;Han, Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.827-838
    • /
    • 2010
  • The purpose of this study is to identify the conceptions of elementary school teachers regarding the variation scale about astronomical distance and its accuracy with distance increased. The astronomical distance questionnaire was administered to 69 elementary school teachers, then; three teachers were selected to interview about their conceptions. Results showed that many elementary school teachers overestimated the distance from the Earth to the Moon and to the Sun, and dramatically underestimated the distances to the nearest star and to the nearest galaxy. They inferred astronomical distance with the use of both intuitive (psychological) measure and theoretical (calculative) measure. They well recited the terminology such as AU and a light-year, yet they did not show a good understanding of what the terms exactly means. Some teachers thought that the distance to Neptune is farther than the distance from Earth to the nearest star. There was a considerable variability in the participants' estimates of astronomical distances. Elementary school teachers showed a tendency to overestimate the distance as it gradually increases to the outer solar system.

The Distribution of Potentially Toxic Elements in Soils Derived from PFA near Youngwol Power Plant (영월지역 토양중 PFA로부터 기인된 잠재적 독성원소의 분포)

  • Choi, Sun Kyung;Moon, Hi-Soo;Song, Yoongoo;Yoo, Janghan
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.509-518
    • /
    • 1998
  • Fly ashes have been deposited around Youngwol power plant until electrostatic precipitator was installed in 1981. Fresh fly ash samples from electrostatic precipitator and weathered fly ash from ash disposal site were collected from Youngwol power plant, along with 65 soil samples of nearby area to look into the influence of PFA deposit on the soils in surrounding area. In chemistry, EPA does not contain high level of toxic elements and there is no notable concentration of toxic elements in soil near power plant. Total concentrations of Co, Cr, Cu, V, and Zn are 13 ppm, 89 ppm, 73 ppm, 157 ppm and 57 ppm in PFA. Concentrations of theses elements in ash-rich soils are 15 ppm, 78 ppm, 60 ppm, 133 ppm and 68 ppm, and those in ash-poor soils are 19 ppm, 70 ppm, 38 ppm, 91 ppm and 97 ppm. But these metal elements are highly concentrated in magnetic fractions of EPA (Co, 129 ppm; Cr, 217 ppm; Cu, 210 ppm; V, 197 ppm; Zn 90 ppm). Considering the process of long-term weathering of PFA, potentially toxic substances from the ash could be leached into soils and groundwater.

  • PDF

Mineralogical and Geochemical Characteristics of PFA (Pulverised Fuel Ash) from Yongwol Power Plant (영월 화력발전소에서 배출된 석탄회의 광물학적, 지화학적 특성)

  • Lee, Gyoo Ho;Choi, Sun Kyung;Moon, Hi-Soo;Lee, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.443-450
    • /
    • 1997
  • The main purpose of this study is to investigate mineralogical and chemical changes during natural weathering, and assess the mobility of major and trace elements. Yongwol power plant utilize anthracite coal which is mainly composed of illite, kaolinite, pyrophyllite and quartz in mineralogy. Coal and coal-derived fly ash samples were sampled by the electrostatic precipitator in Yongwol coal-fired power plant in Korea. Short term weathered fly ash were also collected in ash disposal mound, and two profile soil samples were taken from an ash near the power plant. Amorphous materials are the main component of the fly ash, and mullite, quartz, magnetite and heamatite are present in all coal-derived fly ash. In chemistry, Si and Al are the most abundant elements of the total content. The ash samples were fractionated into upper $90{\mu}m$ and under $45{\mu}m$ size. Finer particles show higher concentrations in metal contents including Co, Cr, Cu, Ni, V, Zn and Pb. Concentration of Zn and Pb are nearly 4 times higher concentration in the finer particles. For the profile samples, the concentrations of $SiO_2$, $Na_2O$, MgO and $K_2O$ generally show increasing trends with depth, whereas those of $Fe_2O_3$ and $TiO_2$ appear to decrease with depth. Content of MnO does not show any specific depth trend. For the trace elements, Co, Cu, Ni and V show increasing concentrations with depth.

  • PDF

Investigation for TCE Migration and Mass Discharge Changes by Water Table Rising in Porous Media (투수성 매질 내에서의 지하수위 상승에 따른 TCE 거동특성 및 오염물 이동량 변화 연구)

  • Lee, Dong Geun;Moon, Hee Sun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 2013
  • In this study, three dimensional and two dimensional laboratory experiments were conducted to investigate the effect of water table rising on DNAPL migration, contaminants mass discharge ($M_d$), and residual NAPL distribution. The accumulation of TCE in unsaturated zone was observed in both two and three dimensional experiments. This implies DNAPL sources could exist in unsaturated zone at contaminated sites. It has been investigated that the TCE concentration is proportional to the areal ratio of residual TCE. This means the residual TCE obviously could affect the TCE concentration in aquifer system. The results of the two-dimensional experiment indicated that the contaminant sources in unsaturated zone could lead the $M_d$ increasing with water table rising and the source zone heterogeneity could also highly affect the $M_d$.

Survey of Solar System Objects using KMTNet

  • Yang, Hongu;Ishiguro, Masateru;Lee, Hee-Jae;JeongAhn, Youngmin;Moon, Hong-Kyu;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2019
  • Solar system small bodies are unusual objects in astronomical survey data in that they are moving on the celestial sphere. In addition, even in a normal status, their magnitudes are changing over time, firstly because their relative positions with respect to the Sun and Earth are continually changing, secondly because they are rotating bodies with non-spherical shapes. Furthermore, some of them might exhibit unexpected activities, which could be caused by mass ejection or disintegration. Detections and observations of such activities are challenging due to their abrupt nature. Therefore, continuous monitoring observations of large number of Solar system small bodies are required to systematically obtain detailed/transient information about them. Since 2018/2019 winter, we have launched a new project using Korea Microlensing Telescope Network (KMTNet) for detecting such transient phenomena of Solar system objects. Our main goal is to monitor the magnitudes and detect sudden brightness changes. We also plan to discover interesting new objects, and monitor rotational brightness oscillations of asteroids. We intend to monitor the magnitudes of ~ 20,000 known Solar system small bodies per night, and acquire lightcurves of ~ 1,000 asteroids.

  • PDF

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.