• Title/Summary/Keyword: Sump water

Search Result 42, Processing Time 0.019 seconds

Experimental Study of Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향의 실험연구)

  • Ku, Hee-Kwan;Jung, Bum-Young;Hong, Kwang;Jung, Eun-Sun;Jeong, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3748-3754
    • /
    • 2009
  • An integral head loss test in a test apparatus was conducted to simulate chemical effects on a head loss across a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). The test was conducted during 30 days in the condition of a short spray, a long spray, and no materials with chemical effects. The result exhibited that the head loss was affected on amounts of the exposed materials according to spray conditions. XRD analysis of the collected precipitates showed that the precipitates were phosphate compounds. Comparison of the head loss with dissolved species concentration showed that high increase rate of the head loss resulted from the corrosion of aluminum and zinc but slow increase rate of the head loss resulted from the precipitates induced by Si, Mg, and Ca from leaching reaction at NUKON and concrete after passivation of metal specimens.

Assessment of Hydrogeochemical Characteristics and Contaminant Dispersion of Aquifer around Keumsan Municipal Landfill (금산 매립장 주변 대수층의 수리지화학적 특성 및 오염 확산 평가)

  • Oh, In-Suk;Ko, Kyung-Seok;Kong, In-Chul;Ku, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.657-672
    • /
    • 2008
  • The purposes of this study are to investigate the hydrogeochemical characteristics of groundwaters around Keumsan municipal landfill, and to evaluate the contaminant dispersion from the landfill and its environmental impact. To achieve these goals, groundwater quality logging, hydrochemical analysis, multivariate statistical analysis, and contaminant transport modeling were performed. The water quality logging indicated a leaking from the landfill at the depth of 4-12m around a leachate sump. Electrical conductivity data indicated that groundwaters within 70-100m from landfill were affected by the landfill leakage. Principal components 1 and 2 obtained from principal components analysis (PCA) reflect the influence of leachate and the characteristics of aquifer media, respectively. The results of principal component analysis also indicated the natural attenuation processes such as cation exchange, sorption, and microbial biodegradation. The modeling results showed that groundwater flow westward along a valley from the landfill and contaminants transport accordingly.