• 제목/요약/키워드: Summer precipitation

검색결과 523건 처리시간 0.029초

익산지역 강수의 계절별 산성도와 화학성상 (Seasonal Variations of Acdity and Chemicstry of Precipitation in Iksan Area)

  • 강공언;오인교;김희강
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.393-402
    • /
    • 1999
  • Precipitation samples were collected by the wet-only sampling method in Iksan in the northwest of Chonbuk from March 1995 to February 1997. These samples were analyzed for the concentration of ion components, in addition to pH and electrical conductivity. The annual mean pH of precipitation was 4.8 and the seasonal trend of pH was shown to be low in Fall and Winter(4.5), middle-ranged in Spring(4.7) and high in Summer(5.0). The frequency of pH below 5.6 was about 71%. The seasonal pattern of pH frequency was found to be different in each season. In the case of the pH less than 5.0, the frequency was higher in Spring, Fall and Winter than in Summer, especially higher in Fall than in other seasons. The concentrations of analysed ions showed a pronounced seasonal pattern. However, major ion species for all seasons were $NH^+_4,;Ca^{2+};and;Na^+$ among cations and $SO^{2-}_4,;Cl^-;and;NO^-_3$ among anions. The major acidifying species appeared to be $nss-SO^{2-}_4;and;NO^-_3$, and the main bases responsible for the neutralization of precipitation acidity were $nss-Ca^{2+};and;NH^+_4$. The potential acidity of precipitation, pAi, was found to be between 3.0 and 5.0 for total samples, while the measured pH was approximately between 3.9 and 7.8. The seasonal trend of pAi showed a decreasing order: Summer (4.3), Winter(4.0), Spring and Fall(3.8). During the Fall, both pAi and pH were especially very low, which indicated that during this period the potential acidity of precipitation was high but the neutralizing capacity was low. For Spring, pAi was very low but pH was slightly high. This was likely due to the large amount of $CaCO_3$ in the soil particles transported over a long range from the Chinese continent that were incorporated into the precipitation, and then neutralized the acidifying species with its high concentraton.

  • PDF

도시화가 도시지역 강우변화에 미치는 영향 연구 (A study of urbanization effect to a precipitation pattern in a urban area)

  • 오태석;안재현;문영일;정민수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.894-899
    • /
    • 2005
  • 1970년대 이후, 우리나라는 산업화에 따른 급격한 도시화가 이루어졌다. 본 논문에서는 우리나라의 대표적인 도시인 서울특별시 및 6대 광역시의 1973년부터 2003년까지의 31개년의 강우량 자료를 이용하여 강우량의 변화에 대하여 분석하였다. 또한 강우량의 변화는 도시화 이외에도 엘니뇨 등의 기상 변화와 각종 기상 이변에도 큰 영향을 받으므로 도시 지역과 비교할 수 있는 비도시 지역을 선정하여 도시 지역의 강우량 변화와 비도시지역의 강우량 변화를 비교 분석하였다. 도시 지역과 비도시 지역의 연강우량, 여름 강우량, 지속 시간 1시간 및 24시간 연최대 강우량에 대해 통계적인 분석을 수행하였다. 그 결과, 도시 지역에서의 여름($6\~9$월) 강우량의 증가가 비도시 지역에 비해 두드러졌다.

  • PDF

여름철 한반도 강수의 시·공간적 특성 연구 (Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula)

  • 인소라;한상옥;임은순;김기훈;심재관
    • 대기
    • /
    • 제24권2호
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Effect of precipitation on soil respiration in a temperate broad-leaved forest

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Joo-Yeon;Chun, Jung-Hwa;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권2호
    • /
    • pp.77-84
    • /
    • 2018
  • Background: For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results: The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was $12.0^{\circ}C$. The minimum value for monthly Ts was $-0.4^{\circ}C$ in February 2015 and $2.0^{\circ}C$ in January 2016. The maximum monthly Ts was $23.6^{\circ}C$ in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was $784.3mg\;CO_2\;m^{-2}\;h^{-1}$ in July when 26.8 mm of daily precipitation was measured. The maximum was $913.6mg\;CO_2\;m^{-2}\;h^{-1}$ in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions: In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.

여름철 계절안 진동이 한반도 강수에 미치는 영향 및 장기 변화 특성 연구 (Influence of Boreal Summer Intraseasonal Oscillation on Korean Precipitation and its Long-Term Changes)

  • 이준이;;문수연;하경자
    • 대기
    • /
    • 제27권4호
    • /
    • pp.435-444
    • /
    • 2017
  • By analyzing Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) from May to September for 1951~2007, this study investigates impacts of two dominant boreal summer intraseasonal oscillation (BSISO) modes on precipitation over Monsoon Asia including Korea and long-term change of 10~20-day and 30~60-day ISO over Korea. It is shown that BSISO strongly modulates rainfall variability over the many part of Monsoon Asia including Korea. Korea tends to have more (less) rainfall during the phases 3~5 (7~8) of BSISO1 representing the canonical northward/northeastward propagating 30~60-day ISO and during the phases 6~8 (3~5) of BSISO2 representing the northward/northwestward propagating 10~20-day ISO. It is found that the 10~20-day ISO variability contributes to summer mean rainfall variability more than 30~60-day ISO over Korea. For the 57 years of 1951~2007, the correlation coefficient between the May to September mean precipitation anomaly and standard deviation of 10~20-day (30~60-day) ISO is 0.71 (0.46). It is further noted that there is a significant increasing trend in the 10~20-day and 30~60-day ISO variability in the rainy season during the period of 1951 to 2007.

아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성 (Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon)

  • 전하은;하경자;김혜렴;오효은
    • 대기
    • /
    • 제34권3호
    • /
    • pp.257-271
    • /
    • 2024
  • In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.

한반도 가뭄의 동아시아 내에서의 지연상관 (Lag-correlation of Korean Drought in East Asia)

  • 전갑영;변희룡;김도우
    • 대기
    • /
    • 제18권4호
    • /
    • pp.249-266
    • /
    • 2008
  • The tendencies for teleconnection with a time lag and other characteristics of Korean summer droughts have been investigated and some clues to predict the drought occurrences several months before have been found. First, the May and June droughts in Korea are simultaneous with those over the northwestern part of Korea owing to the relation with the baroclinic wave. However, the July and August droughts occur over the mid-latitudes or southern part of Korea owing to the relation with the Changma front. Second, several months before the MJJA droughts in Korea, it is found that the effective drought index (EDI) over particular areas (hereafter, referred to as the omen areas) is large. Thailand, Carolina Island, Mongolia, and Central Bengal Bay were selected as the omen areas. Third, when the monthly minimum EDI (MME) of the omen area in winter is more than 0.7, it signifies that the precipitation is above normal, Korea has almost always experienced a summer drought. However, the droughts occurring with this type of relationship only represent half of the MJJA droughts in Korea. Fourth, the relationships between the Korean drought and the precipitation over omen areas in low latitudes are not valid over all the eight precipitation areas in Korea, but only over Areas I, II, and III, where heavy rains occur during spring and summer.

대기의 강이 한반도 지역별 강수에 미치는 영향 (Influence of Atmospheric Rivers on Regional Precipitation in South Korea)

  • 권예은;박찬일;백승윤;손석우;김진원;차은정
    • 대기
    • /
    • 제32권2호
    • /
    • pp.135-148
    • /
    • 2022
  • This study investigates the influence of atmospheric river (AR) on precipitation over South Korea with a focus on regional characteristics. The 42-year-long catalog of ARs, which is obtained by applying the automatic AR detection algorithm to ERA5 reanalysis data and the insitu precipitation data recorded at 56 weather stations across the country are used to quantify their relationship. Approximately 51% of the climatological annual precipitation is associated with AR. The AR-related precipitation is most pronounced in summer by approximately 58%, while only limited fraction of precipitation (26%) is AR-related in winter. The heavy precipitation (> 30 mm day-1) is more prone to AR activity (59%) than weak precipitation (5~30 mm day-1; 33%) in all seasons. By grouping weather stations into the four sub-regions based on orography, it is found that the contribution of AR precipitation to the total is largest in the southern coast (57%) and smallest in the eastern coast (36%). Similar regional variations in AR precipitation fractions also occur in weak precipitation events. The regional contrast between the northern and southern stations is related to the seasonal variation of AR-frequency. In addition, the regional contrast between the western and eastern stations is partly modulated by the orographic forcing. The fractional contribution of AR to heavy precipitation exceeds 50% in all seasons, but this is true only in summer along the eastern coast. This result indicates that ARs play a critical role in heavy precipitation in South Korea, thus routine monitoring of ARs is needed for improving operational hydrometeorological forecasting.

여름철 집중 강우량 변동에 의한 저서성 대형무척추동물 군집구성의 변화 (Change of Benthic Macroinvertebrates Community Composition Following Summer Precipitation Variance)

  • 홍철;김원석;김진영;노성유;박지형;이재관;곽인실
    • 생태와환경
    • /
    • 제52권4호
    • /
    • pp.348-357
    • /
    • 2019
  • 여름철 집중 강우량 감소에 따른 저서성 대형무척추동물 군집 변화를 알아보기 위하여 섬진강 본류 25지점을 대상으로 2014년과 2015년 각각 5월과 9월 총 4회 조사를 실시하였다. 서식환경에 중요하게 작용하는 요인인 강우량, 기온, 수질, 수심, 유속, 하상구성을 수집하고 측정하였다. 섬진강의 5월 누적강우량(CP)은 2014년 2,322.1 mm, 2015년 2,371.0 mm로 큰 차이를 보이지 않았으나, 9월 CP는 2014년 7,678.2 mm, 2015년 3,726.1 mm로 반절 이상 감소하였다. 여름철 집중강우로 인한 유실효과로, 개체밀도와 종 수는 5월이 9월보다 높았다. 5월은 깔따구류와 세갈래하루살이, 9월은 네점하루살이, 두점하루살이, 세갈래하루살이가 우점을 차지하였다. 생물지수와 환경요인과의 상관성 분석 결과, 하상구성 및 유속과 상관성이 있는 것으로 나타났다. 저서성 대형무척추동물 우점종과 환경요인과의 집괴분석한 결과 5월과 9월의 CP와 MT에 따라 4 그룹으로 나뉘었다. 주성분 분석 결과 집괴분석으로 나뉘어진 그룹의 특성을 잘 반영하였으며, 특히 네점하루살이와 두점하루살이는 강우량의 변동을 잘 반영하였다.

우리나라 사계절 다중일 누적 극한강수현상의 시·공간적 변화 (Spatio-Temporal Changes in Seasonal Multi-day Cumulative Extreme Precipitation Events in the Republic of Korea)

  • 최광용
    • 한국지역지리학회지
    • /
    • 제21권1호
    • /
    • pp.98-113
    • /
    • 2015
  • 본 연구에서는 최근 40년간(1973~2012) 우리나라 기상청 산하 61개 관측지점의 일강수량 자료를 바탕으로 1~5일 누적 최대 강수량에서 추출한 각 계절별 다중일 누적 극한강수현상의 시 공간적 발생 패턴과 변화 양상의 특징을 밝히고자 하였다. 사계절 중 다중일 누적 극한강수현상의 규모 자체는 여름철에 가장 크지만, 계절 강수량 증감에 따른 극한강수현상 규모 변화민감도는 가을철에 더 높게 나타난다. 장기간 시계열에 나타난 선형 추세 분석에 따르면, 1~5일 다중일 누적 극한강수현상의 규모는 동일하게 사계절 중 여름철에 가장 뚜렷하게 증가하는 변화 양상이 나타난다. 특히, 경기도와 강원영서, 충청도 지역을 중심으로 여름철 다중일 누적 극한강수현상의 증가 규모가 크고 뚜렷하게 나타나고, 1일에서 5일로 누적 기간이 길수록 다중일 누적 극한강수현상의 증가 경향은 이들 지역이외에 소백산맥 주변지역에서도 관찰된다. 통계적 유의성을 보이는 이러한 다중일 누적 극한강수현상 증가추세는 일부 관측지점에서는 겨울철에도 1~2일 누적 극한강수현상에 나타나는 점도 주목할 만하다. 한편, 극한강수량이 계절 강수량에서 차지하는 비율의 변화 추세를 분석해보면, 사계절 중 겨울철에 증가 경향이 가장 뚜렷하게 나타난다. 이러한 결과들은 여름철뿐만 아니라 다른 계절의 다중일 누적 극한강수현상의 시 공간적 변화에도 대비할 필요성이 있음을 가리킨다.

  • PDF