• Title/Summary/Keyword: Sulu Sea

Search Result 12, Processing Time 0.016 seconds

Devonian Strata in Imjingang Belt of the Central Korean Peninsula: Imjin System (임진강대의 중부 고생대층: 임진계)

  • Choi, Yong-Mi;Choh, Suk-Joo;Lee, Jeong-Hyun;Lee, Dong-Chan;Lee, Jeong-Gu;Kwon, Yi-Kyun;Cao, Lin;Lee, Dong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.107-124
    • /
    • 2015
  • The 'Imjin System' (or Rimjin System) was established in 1962 as a new stratigraphic unit separated from the Upper Paleozoic Pyeongan System based on the discovery of brachiopods and echinoderms of possible Devonian age. Subsequent discoveries of the Middle Devonian charophytes confirmed the Devonian age of the system. The Imjin System is distributed in the Imjingang Belt between the Pyongnam Basin and the Gyeonggi Massif, spans from the eastern areas including Cholwon-gun of the Gangwon Province, Gumchon-gun, Phanmun-gun, and Tosan-gun of the Hwanghaebuk Province, to the western areas of Gangryong-gun and Ongjin-gun of the Hwanghaenam Province, and includes the Yeoncheon Group (metamorphic complex) to the south. Unlike the lower Paleozoic strata in the Pyongnam Basin which solely produce marine invertebrate fossils, the Imjin System yields diverse non-marine plant and algal fossils. Brachiopods of the system are similar to those from the Devonian of the South China Block and include taxa endemic to the platform, implying a close paleogeographic affinity to the South China Block. The Imjin System is generally considered as of Middle to Late Devonian in age, although there have been suggestions that the system is of the Middle Devonian to Carboniferous in age. North Korean workers postulated that the Imjin System was deposited in the current geographic position, where the "Imjin Sea" (an extension of the South China Platform) was located during the Devonian. The Imjin System displays strong local variations in stratigraphy and its thickness. It has recently been reported that the strata are repeated and overturned by thrust faults in many exposures. The Yeoncheon Group a southward extension of the Imjin System, also experienced intense tight folding and contractional deformation. Northward decrease in metamorphic grade within the system suggests that the northern part of the Gyeonggi Massif and the Imjingang Belt are probably an extension of the Dabie-Sulu Belt between the South China and Sino-Korean blocks, and the Imjin System is an remnant of accretion resulted from the collision between the two blocks. In order to understand tectonic evolution and Paleozoic paleogeography of eastern Asia, further studies on stratigraphic, sedimentologic and tectonic evolution of the Imjin System involving scientists from the two Koreas are urgently needed.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF