• Title/Summary/Keyword: Sulphuric acid medium

Search Result 5, Processing Time 0.017 seconds

Effect of S-AITA on Mild Steel Corrosion in Acidic Medium

  • Chandrasekaran, V.;Saravanan, J.
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.160-167
    • /
    • 2006
  • S-Acetyl Isothiourea Acetate (S-AITA) was synthesized in the laboratory and this influence on the inhibition of corrosion of mild steel in 1.11 N hydrochloric and 1.12 N sulphuric acids was investigated by weight loss and potentiostatic polarization techniques at 303K, 353K and 403K. These results were confirmed by the impedance technique. The inhibition efficiency increased with increase in concentration of inhibitor and decreased with rise in temperature from 303K to 403K. The maximum inhibition efficiency of S-AITA was found to be 99.95% (0.5% of S-AITA) at 303K in sulphuric acid. The adsorption of this compound on the mild steel surface from the acids has been found to obey Temkin's adsorption isotherm. The potentiostatic polarization results revealed that S-AITA was a mixed type inhibitor. Some thermodynamic parameters i.e., activation energy (Ea), free energy of adsorption (${\Delta}G_{ads}$), enthalpy of adsorption (${\Delta}H$) and entropy of adsorption (${\Delta}S$) were also calculated from weight loss data.

Inhibition of Mild Steel Corrosion in 0.25 M Sulphuric Acid Solution by Imatinib Mesylate (0.25M 황산 용액 상에서의 Imatinib Mesylate에 의한 연강철 부식 억제)

  • Mohana, K.N.;Shivakumar, S.S.;Badiea, A.M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.364-372
    • /
    • 2011
  • The corrosion inhibition of imatinib mesylate (IMT) on mild steel in 0.25 M sulphuric acid has been studied using gravimetric and potentiodynamic polarization techniques at various concentrations of inhibitor, temperature and fluid velocities. The results obtained showed that, inhibition efficiency (% IE) increases with increasing concentration of the inhibitor. The adsorption process on mild steel surface follows Langmuir adsorption isotherm. The values of Gibbs free energies of adsorption obtained suggest that, the adsorption process of IMT on mild steel is chemisorption. Thermodynamic parameters were evaluated and discussed. The electron orbital density distribution of HOMO and LUMO of IMT was used to discuss the inhibition mechanism. FT-IR spectroscopy and SEM images were used to analyze the surface adsorbed film.

Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

  • Sharma, Priyamvada;Hemkar, Shalini;Khandelwal, C.L.;Sharma, P.D.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. $$-\frac{1}{2}\frac{d[Ce^{IV}]}{dt}=\frac{kK[Ru^{III}][butanone]}{1+K[butanone]}$$ (1). However, oxidation of cyclohexanone in absence of catalyst accounts for the rate eqn. (2). $$-\frac{1}{2}\frac{[Ce^{IV}]}{dt}=\frac{(k_1+k_1K^'[H^+])[Ce^{IV}][Cyclohexanone]}{1+K_3[HSO_4^-]}$$ (2) Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

Corrosion Inhibition of Mild Steel in Acidic Medium by Jathropha Curcas Leaves Extract

  • Odusote, Jamiu K.;Ajayi, Olorunfemi M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Inhibition of corrosion of mild steel in sulphuric acid by acidic extract of Jatropha Curcas leaves has been studied using weight loss and thermometric measurements. It was found that the leaves extract act as a good corrosion inhibitor for mild steel in all concentrations of the extract. The inhibition action depends on the concentration of the Jatropha Curcas leaves extract in the acid solution. Results for weight loss and thermometric measurements indicate that inhibition efficiency increase with increasing inhibitor concentration. The adsorption of Jatropha curcas leaves extract on the surface of the mild steel specimens obeys Langmuir adsorption isotherm. Based on the results, Jatropha curcas leaves extract is recommended for use in industries as a replacement for toxic chemical inhibitors.

Hot AC Anodising as a Cr(VI)-free Pre-treatment for Structural Bonding of Aluminium

  • Lapique, Fabrice;Bjorgum, Astrid;Johnsen, Bernt;Walmsley, John
    • Journal of Adhesion and Interface
    • /
    • v.4 no.2
    • /
    • pp.21-29
    • /
    • 2003
  • Hot AC anodising has been evaluated us pre-treatment for aluminium prior to structural adhesive bonding. Phosphoric and sulphuric acid hot AC anodising showed very promising adhesion promoter capabilities with durability comparable with the best standard DC anodising procedures. AC anodising does not required etching prior to anodising and offers u pre-treatment time down to 20 seconds. The interface/interphase between the aluminium substrate and the adhesive was investigated in order to get a better understanding of the involved adhesion mechanisms and to explain the long-tenn properties. The alkaline medium formed at the oxide layer/adhesive interface has been shown to induce a partial dissolution of the oxide layer leading to the formation of metallic ions which diffuse in the adhesive (EPMA measurements). The effect of diffusion of the Al ions on adhesion and joint durability is still uncertain but studies showed that pre-bond moisture affected the joints durability and to some extent the diffusion length. specially for DC anodised samples. So far no direct correlation could be established between the diffusion length d and the joints durability but new trials with better control over the elapsed time between bonding and adhesive curing are expected to help getting a better understanding of the involved mechanisms.

  • PDF