• Title/Summary/Keyword: Sulfur Vulcanizates

Search Result 11, Processing Time 0.026 seconds

Recycling Natural Rubber Vulcanizates through Mechanochemical Devulcanization

  • Jang G. K.;Das C. K.
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.30-38
    • /
    • 2005
  • Sulfur-cured gum natural rubber vulcanizates were devulcanized using two different concentrations of diallyl disulfide. The devulcanization process was performed at $110^{\circ}C$ min in an open two-roll cracker-cum-mixing mill. Natural rubber vulcanizates having various sulfur/accelerator ratios were used to study the cleavage of monosulfide, disulfide, and polysulfide bonds. The properties of devulcanized natural rubber increased upon increasing the disulfide concentration and the mechanical properties of the revulcanized natural rubber increased upon decreasing the sulfur content in the original rubber vulcanizates. The scorch time and the maximum state of cure both increased when the ground vulcanizates were treated with higher amounts of disulfide. TGA and DMA were conducted to study the effects of the devulcanization on the thermal stability and the $T_g$ behavior of the vulcanizates. SEM analysis was conducted to study how the failure mechanism was affected by the devulcanization process. It was possible to recover $70-80\%$ of the original gum rubber properties by using this process. From IR spectroscopic analysis, we observed that the oxidation of the main chains did not occur during high-temperature milling.

Influence of Thermal Aging in Change of Crosslink Density and Deformation of Natural Rubber Vulcanizates

  • Choe, Seong Sin
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.628-634
    • /
    • 2000
  • Crosslink is the most important chemistry in a rubber vulcanizate. Degree and type of crosslinks of the vulcanizate determine its physical properties. Change of crosslink density and deformation of a rubber vulcanizate by thermal aging were studied using natural rubber (NR) vulcanizates with various cure systems (conventional, semi-EV, and EV) and different cure times (under-, optimum-, and overture). All the NR vulcanizates were deformed by the thermal aging at 60-100 $^{\circ}C.$ The higher the aging temperature is, the more degree of the deformation is. The undercured NR vulcanizates after the thermal aging were deformed more than the optimumand overcured ones. The NR vulcanizates with the EV cure system were less deformed than those with the conventional and semi-EV cure systems. The deformation of the NR vulcanizates was found to be due to change of the crosslink density of the vulcanizates. The crosslink densities of all the vulcanizates after the extraction of organic materials were also changed by the thermal ging. The sources to change the crosslink densities of the vulcanizates by the thermal aging were found to be dissociation of the existing sulfur crosslink and the formation of new crosslinks by free sulfur, reaction products of curing agents, and pendent sulfide groups.

Characterization of NR Vulcanizates Cured by Both Sulfur and Resole (황과 레졸로 가교된 천연고무 가교물의 특성)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2000
  • Physical properties of NR vulcanizates cured by both sulfur and resole were studied. Cure characteristics of the compounds were also investigated. Two types of resoles with different molecular weight distributions were employed. The scorch time of the NR compound containing the resole with a low molecular weight distribution was shorter than that of the compound containing the resole with a high one. Crosslink densities of the NR vulcanizates with a high resole content after the thermal aging at $95^{\circ}C$ decreased, while that of the vulcanizate without resole after the thermal aging at $95^{\circ}C$ increased. Though crosslink densities of the NR vulcanizates with a high resole content decreased with increasing the aging time, the moduli increased while the tensile strength and tear strength decreased.

  • PDF

Thermal Aging Properties of NR Vulcanizates with Different Cure Systems (가교 시스템이 다른 NR 가황물의 열노화 특성)

  • Choi, Sung-Seen;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Changes of physical properties or NR vulcanizates with different cure systems by thermal aging were investigated. Two sulfur cure systems and one resole cure system were employed, and total contents of the curatives were varied. For the NR vulcanizates with sulfur cure systems, hardness and modulus after the thermal aging at $90^{\circ}C$ for 3 days were increased, but elongation at break and tensile strength were decreased. For the NR vulcanizates with resloe cure system, the physical properties after the thermal aging were decreased. The change of physical properties by the thermal aging was explained with the crosslink density change. The crosslink densities or the NR vulcanizates with sulfur cure systems were increased after the thermal aging, but those with resole cure system were decreased. Influence of the migration of antidegradant on the changes of physical properties was also investigated. However, the changes of physical properties by the thermal aging were not explained sufficiently with the migration of antigradant.

Studies on analysis of Rubber Vulcanizates by Pyrolysis-Gas Chromatography (II) (NBR, CR, and EPDM Vulcanizates) (Pyrolysis-Gas Chromatography를 이용한 가황 고무의 열분석에 관한 연구(II) (NBR, CR 및 EPDM 가황체))

  • Huh, D.S.;Kim, J.S.;Kim, K.J.;Ahn, B.K.;Suh, S.K.
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.314-323
    • /
    • 1987
  • A blend ratio of rubber vulcanzates comprising NBR, CR, EPDM, NR, BR, and SBR alone or blended is determind through a P.G.C. It is found that a characteristic peak of elastomer is proportional to the content of each elastomer when they are pyrolysed. It is also classified to the different AN content in NBR vulcanizates, identification of sulfur-modified and non-sulfur bearing CR polymers, and the content of ethylene, propylene monomer and the third monomer in EPDM vulcanizetes.

  • PDF

Aging Behavior of Natural Rubber and EPDM (천연고무와 EPDM의 노화 거동)

  • Kim, Jin K.;Kim, In-Hwon;Shin, Jin-Soo
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.159-167
    • /
    • 1998
  • Rubber products are aged like human complexion by the attack of oxygen, ultra violet, ozone, etc.. Aging is very important and also very complicated phenomenon to understand. This may explain the rarity of papers on this subject. In this study, we tried to understand the aging behavior of EPDM compared to that of natural rubber. We also compared the sulfur vulcanized system to the peroxide vulcanized one. In our experiment, the peroxide vulcanizates were more advantageous in aging than the sulfur vulcanizates. The authors belived that this study about the high performance EPDM would be applicable to rubber industry.

  • PDF

Heat and Crack Resistance of Natural Rubber(NR) Compounds According to the Type of Antioxidants (산화방지제 종류에 따른 천연고무 배합물의 내열성 및 내크랙성)

  • Roh, Jong-Dae;Shin, Jun-Geun;Kim, Jin-Tae;Hur, Jae-Young;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 1999
  • In this study, heat and crack resistance of natural rubber (NR) compounds was evaluated. To prevent the effects of the crosslinking system, a conventional vulcanization system was selected, where the accelerator/sulfur ratio was fixed to 0.25. Vulcanizates containing phenylenediamine showed high tensile strength and tear strength compared to other vulcanizates because phenylenediamine can cause additional crosslinking and high dispersion In the vulcanizates. In the pure shear test, vulcanizates containing phenylenediamine showed an excellent tearing energy which was due to the irregular crack path, and showed excellent heat and crack resistance which was also due to the good dispersity of antioxidant and additional crosslinks in the rubbber vulcanizates.

  • PDF

Analytical Techniques for Measurement of Crosslink Densities of Rubber Vulcanizates

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • It is important to analyze crosslink densities of rubber articles because the physical properties are dependent on the crosslink densities. In this paper, analytical techniques for the measurement of crosslink densities of rubber vulcanizates are described. The most widely used method to measure the crosslink density is a swelling method combined with the Flory-Rehner equation. Application of the interaction parameter (${\chi}$) of rubber and swelling solvent is critical because the crosslink density is absolutely dependent on the ${\chi}$ value. Methods for obtaining ${\chi}$ employ not only solubility parameters of the polymer and swelling solvent but also inverse gas chromatography (IGC). The solubilities of rubbers can be obtained using micro differential scanning calorimetry (${\mu}DSC$), intrinsic viscosity measurement, and UV-visible spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy has been also used for the measurement of the crosslink density using the $T_2$ relaxation time, which is determined by spin-spin relaxation in solid-state NMR. For sulfur-cured rubber vulcanizates, crosslink densities according to the crosslink types of mono-, di-, and polysulfides are measured by treating the rubber samples with a chemical probe composed of thiol and amine compounds. Measurement methods of physical crosslinking by filler, crystallization, and ionic bonding have also been introduced.

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF