• Title/Summary/Keyword: Sulfonate

Search Result 484, Processing Time 0.027 seconds

A Study for Application of Polycarboxilic Type Admixture to Precast High-Strength Concrete Piles (프리캐스트 고강도 콘크리트(PHC) 파일에 조강형 폴리카본산(PC)계 혼화제의 적용에 관한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Park, Chul Ju;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.263-270
    • /
    • 2011
  • In this study, the performance of Poly-Naphthalene Sulfonate (PNS) type-admixture used widely in South Korea and Polycarboxilic type-admixture(i.e., WF2000) developed in the J company of the domestic, for precast concrete products produced in the factories, was evaluated. With the 20% reduced usage of WF2000 compared to PNS type-admixture, workability was considerably improved due to high water-reducing ratio, accelerating effect of concrete setting and accelerant dispersant action, which the product has, under the high temperature. In addition, the development of initial and long-term strengths of PHC plies was predominant. For WF2000, it is also possible to correspond with the change of original materials and environmental conditions since the control of water-reducing and supporting forces is feasible. Accordingly, it was noted that WF2000 is superior for deterioration of production & workability and bad casting problems in summer and the solution of initial strength reduction problem due to the delay of setting in winter.

Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

  • Kim, Young-Nam;Kim, Jiseong;Lee, Jeongeun;Kim, Sujung;Lee, Keum-Ah;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.324-329
    • /
    • 2020
  • Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M2 mutant reeds under Cd stress conditions (up to 1,500 µM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.

Studies on the Gemini Type Amphipathic Surfactant(5) - Preparation and Properties of Double Chain Surfactant with Two Sulfonate Groups Derived from N-Acyldiethanolamines - (제미니형 양친매성 계면활성제에 관한 연구(제5보) - 함질소 장쇄아실디에탄올아민으로부터 유도된 두 개의 술폰산 염기를 갖는 화합물의 합성 및 계면특성 -)

  • Yun, Young-Kyun;Jeong, Hwan-Kyeong;Jeong, Noh-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.565-568
    • /
    • 1998
  • Amphipathic compounds (bis-sulfonate Gemini type) with double or triple long chain alkyl groups were prepared by the reaction of N-(long chain acyl)diethanolamine diglycidyl ethers with fatty alcohols, followed by the reaction with propanesultone. All these new Gemini type surfactants were soluble in water and showed much better micelle forming ability and lowering surface tension than sodium dodecyl sulfonate with one sulfonate group. cmc and ${\Upsilon}$ cmc values of the triple-chain compounds were still much smaller than those of the corresponding double-chain compounds with two common alkyl groups. The efficiency of adsorption at the water/air interface ($pC_{20}$) of these surfactants was very high. Their foaming properties, wetting ability toward a felt chip, and lime-soap dispersing requirement (LSDR) were measured. Their initial foaming properties were high but showed good low foam stability, wettability and LSDR.

  • PDF

Development of Leaf Mutant Cultivars of Cymbidium goeringii by Ethyl-methane-sulfonate (EMS) Treatment. (Ethyl-methane-sulfonate(EMS) 처리에 의한 춘란 잎 돌연변이 품종의 개발)

  • Shin, Yun-Ho;Song, In-Ja;Kang, Eun-Jung;Bae, Tae-Woong;Sun, Hyeon-Jin;Kang, Si-Young;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • This study was for developing leaf chlorophyll mutant cultivars of Cymbidium goeringii by ethyl-methanesulfonate(EMS) treatment. Chlorophyll mutant rhizomes were easily produced by 0.2% EMS treatment in this genus. Among the mutants, they became dark brown about 50% of the rhizomes. When the dark-brown rhizomes were cultured in a solidified MS medium, new rhizomes were formed from part of the old ones. Chlorophyll mutant rhizomes were obtained from subcultured meristem tissues of newly-formed rhizomes. The rhizomes were cut and subcultured for a year and then became mutant plants. As the results, they produced 4 kinds of leaf mutant cultivars; zigzag-striped, comb-striped, net-striped, and dwarf types, indicating that the EMS treatment in the rhizome could produce versatile leaf chlorophyll regulating mutants. These results suggest that our method is useful for developing leaf mutant cultivars of this planta which they are estimated as higher commercial values.

Interactions between Water-Soluble Polyparacyclophanes and Drugs (III) -Complex Formation of Water-Soluble Polyparacyclophanes with Fluorescent Hydrophobic Naphthalene Derivatives in Aqueous Solution- (수용성 폴리파라시클로판류와 약물과의 상호작용(제 3보)-수용액 중 수용성 폴리파라시클로판류와 형광 소수 나프탈렌 유도체류와의 복합체 형성-)

  • Chun, In-Koo;Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.71-79
    • /
    • 1989
  • Complex formation of water-soluble polyparacyclophanes bearing two diphenylmethane or two diphenyl ether skeletons with l-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was investigated quantitatively to develop useful host compounds comparing with ${\alpha}\;-\;and\;{\beta}-cyc1odextrins$$({\alpha}-\;and\;{\beta}-CyDs$) in aqueous solution. Benesi-Hildebrand type analysis of the fluorescent intensity showed that the dissociation constants (Kd) of paracyclophane-ANS complexes were $1.55\;{\times}\;10^{-4}M$ for 1,6,20,25-tetraaza[6.1.6.1]paracyclophane(CPM 44) and $1.23\;{\times}\;10^{-4}M$ for 1,7,21,27-tetraaza[7.1.7.1]paracyclophane (CPM 55), and those of paracyclophane-TNS complexes were $6.99\;{\times}\;10^{-6}M$ for CPM 44 and $6.23\;{\times}\;10^{-5}M$ for CPM 55, in 1:1 molar ratio. On the other hand, the Kd values of 1,7,21,27-tetraaza-14,34-dioxa[7.1.7.1]paracyclophane (CPE 55)-ANS, 1,8,22,29-tetraaza-15,36-dioxa[8.1.8.1]paracyclophane (CPE 66)-ANS, CPE 55-TNS, CPE 66-TNS complexes were $1.75\;{\times}\;10^{-3}M$, $3.07\;{\times}\;10^{-3}M$, $3.75\;{\times}\;10^{-3}M$ and $2.15\;{\times}\;10^{-3}M$, respectively. On the contrary, the Kd values of ${\alpha}-CyD-ANS$, ${\beta}-CyD-ANS$, ${\alpha}-CyD-TNS$ and ${\beta}-CyD-TNS$ complexes were found to be $3.98\;{\times}\;10^{-2}M$, $1.05\;{\times}\;10^{-2}M$, $1.38\;{\times}\;10^{-2}M$ and $3.52\;{\times}\;10^{-4}M$, respectively. These results mean that the complexation of CPMs with ANS or TNS is by 5.6-1,975 fold stronger than that for ${\alpha}-or\;{\beta}-CyDs$, and the complex formation of CPEs with ANS or TNS is nearly same as or somewhat stronger than that for ${\alpha}-or\;{\beta}-CyDs$. From the Kd values determined at different temperatures, thermodynamic parameters were calculated and the complexation was found to be a spontaneous exothermic reaction. The effects of pH on Kd values of CPM 44-ANS, and CPM 55-ANS complexes were negligible in the range of pH 1.2-1.8. However, the Kd values of these complexes increased significantly with increasing ionic strength.

  • PDF

Chemical Reactions in Surfactant Solutions(Ⅲ). Nucleophilic and Micellar Catalyses on Hydrolysis of an Organic Phosphate by Sodium 2-Alkylbenzimidazole-5-sulfonates in Aqueous and CTABr Solutions (계면활성제 용액속에서의 화학반응(제3보) 유기인산 에스테르의 가수분해반응에 미치는 2-알킬벤즈이미다졸-5-술포네이트의 친핵적 및 미셀 촉매효과)

  • Hong, Yeong Seok;Park, Hui Hyeon;Park, Han Seok
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.629-636
    • /
    • 1990
  • Dephosphorylation of p-nitrophenyldiphenylphosphate(p-NPDPP) mediated by anions of sodium 2-alkylbenzimidazole-5-sulfonate(R-BI-SO$_3$Na) in CTABr micellar solutions are obviously slower than that by anion of sodium benzimidazole-5-sulfonate(BI-SO$_3$Na), and the reation rates were decreased with increase of lengths of alkyl groups. This presents a striking contrast to the reactions in aqueous solutions without added CTABr, of which the reaction rates are on approximately same levels. It seems due to steric effect of alkyl groups of R-BI$^-$SO$_3$Na in the Stern layer of micelle, and it is supported by measured activation parameters(△H$^\neq$/TEX>, △G$^\neq$/TEX> and △S$^\neq$/TEX>) of the reactions in aqueous and micellar solutions. In addition to nucleophilic ability of benzimidazole moiety of R-BI$^-$SO$_3$Na on the reactions, these compounds with long alkyl groups(nonyl to pentadecyl) are micellized for themseleves, and increase the reaction rates due to their micellar catalyses in aqueous solutions, not including CTABr.

  • PDF