• Title/Summary/Keyword: Sulfides

Search Result 284, Processing Time 0.027 seconds

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Technology Trends of Metal Recovery from Wastewater (폐수(廢水) 중(中) 유가금속(有價金屬) 회수기술(回收技術) 동향(動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.91-99
    • /
    • 2013
  • Steel industry which has been accomplishes the base of our country economy, automobile and electronic industry are taking charge of the role, whose electroplating is important. Large amount of wastewater and various metal salts, including hazardous materials was generated from the electroplating pre-treatment, plating, washing and post-plating. Currently, the general wastewater follows in the environmental law and neutralization after controlling, sludge where the various metal is mixed reclaims below multiple regulative and trust it is controlling. The sludge which includes the gas price metal reclaims in the field and trust it controls. a reclamation price of land it is insufficient but and the control expense holds plentifully and it loses the gas price metal which is valuable. Consequently, The research regarding to recover a gas price metal actively from this waste water, it is advanced. A new method to recover valuable metals from electroplating wastewater synthesis of metal sulfides using topical methods utilizing iron oxidizing bacteria, reagent of sulfides and solvent extraction using an organic solvent, such as the development of the law to recover these metals and metal sulfides of wastewater using selective recovery have been studied. By using these wastewater treatment method under frequency above 95%, it has been obtained the valuable metal from the wastewater, where the metal ion of Fe, Cu, Zn and Ni complexes was mixed. As we discuss the wastewater, which has been discharged from electroplating process, it is important and will be applied to the resources of metal in the urban mine.

Characteristics of Sulfides Distribution and Formation in the Sediments of Seonakdong River (서낙동강 퇴적물 내 황화물의 분포 및 생성 특성)

  • Park, Seong-Yeol;Hwang, Kyung-Yup;Lee, Nam Joo;Yoon, Young-Sam;Lee, Sang-Ho;Kim, Il-Kyu;Yu, Kwon Kyu;Hwang, Inseong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.843-853
    • /
    • 2009
  • The sediment samples were collected from Seonakdong River and were analyzed for sulfide species such Acid Volatile Sulfide(AVS) and Elemental Sulfur(ES) and Chromium Reducible Sulfide(CRS). Then characteristics of the formation of sulfide species were investigated for six selected samples. Finally the relationship between environmental factors and sulfate reducing rate(SRR) was investigated using two selected samples. Concentrations of AVS and CRS were relatively high, which suggests that organics input to the sediments has been continued until recently and that potential of heavy metals leaching from the sediments is low. SRR in the sediments was closely related to fraction of fine particles(silt+clay) and also to dissolved organic carbon content of the sediment(DOCsed). The dependences of environmental factors such as organic content, temperature, sulfate concentration on the SRR was relatively strong in the selected experiments conducted with the samples from Noksan gate and Daejeo gate samples. The environmental factor dependencies were stronger in the Noksan gate samples than in the Daejeo gate samples, which is probably due to higher surface area of the Noksan gate sediments.