• Title/Summary/Keyword: Sulfer Dioxide

Search Result 3, Processing Time 0.021 seconds

Ethane Evolution in Cucumber Plants by Air Pollutants in Relation to Plants Injury (대기오염 물질 처리에 의한 오이 장해와 에탄 생성)

  • Bae, Gong-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.127-131
    • /
    • 1998
  • Ethane was measured to know whether active oxyzens may induce phytoxicity in stressedcucumber plant.The time course of the increase in ethane evolution was the same as that of the increase of visible injury in all treatments except $SO_2$ treatment.This result showed that air pollutants-induced plant damages were closely related to ethane evolution.And evolution of ethane was more increased in combined stress than singly one,suggesting that phytotoxicity was more severe in complex sterss.Also, evolution of ethane was enhanced in the light condition and scavengers of active oxygen were inhibited,showing that plant damage that plant damage were cause by active oxygens.

  • PDF

The Simultaneous Absorption Rate of CO2/SO2/NO2 from Flue Gas with Aqueous Alkanolamine Solutions (알카놀아민 수용액을 이용한 연소배가스 중의 CO2/SO2/NO2 동시 흡수속도에 관한 연구)

  • Seo, Jong-Beom;Choi, Won-Joon;Kim, Jae-Won;Choi, Bong-Wook;Oh, Kwang-Joong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.639-645
    • /
    • 2009
  • In this study, alkanolamine was used to achieve high absorption rates for $CO_2$ as suggested at several literatures. The absorption rates of aqueous AMP and MEA solutions with $CO_2$, $SO_2$, $NO_2$ were measured using a stirredcell reactor. The reaction rate constants were determined from the measured absorption rates. The performances were evaluated under various operating conditions. As a result, the reactions with $SO_2$, $NO_2$ into aqueous AMP and MEA solutions were classified as an instantaneous reaction respectively. The absorption rates increased with increase of the reaction temperature and the concentration of absorbents. The simultaneous absorption rate of $CO_2/SO_2/NO_2$ into 3, 5, 10 wt.% MEA at various pressure of $CO_2/SO_2/NO_2$, was more increased 14~20% than AMP solution. We investigated the effect of $SO_2$ and $NO_2$ on the simultaneous absorption of $CO_2/SO_2/NO_2$ from a flue gas. The performances were evaluated under various operating conditions in order to investigate the absorption characteristic.

The Effect of Fuel Sulfer on Particulate Matter of Diesel Engine Equipped with Oxidation Catalyst (경유 중 황이 산화촉매 장착 디젤엔진의 입자상 물질에 미치는 영향)

  • 조강래;신영조;류정호;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.487-495
    • /
    • 1997
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidizing CO, HC and SOF effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing SOF and also to have high activity for the oxidation of sulfur dioxide $(SO_2)$ to sulfur trioxide $(SO_3)$. There is a need to develop a highly selective catalyst which can promote the oxidation SOF efficiently, on the other hand, suppress the oxidation of $SO_2$. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated ceramic monolith substrate. A prepared Pt-V catalytic converter was installed on a heavy duty diesel engine and the effect of fuel sulfur on particulate matter (PM) of heavy duty diesel engine was measured. The effect of fuel sulfur on PM of Pt-V was also compared with that of a commercialized Pt catalyst currently being used in some of the heavy duty diesel engines in advanced countries. Only 1 $\sim$ 3% of sulfur in the diesel fuel was converted to sulfate in PM for the engine without catalyst, but almost 100% of sulfur conversion was achieved for the engine with Pt catalyst at maximum loading condition. In the case of Pt-V catalyst, there was no big difference in conversion with the base engine even at maximum loading condition. The reason of SOF increase according to the increase of suflate emission was identified as the washing off effect of bound water in sulfate.

  • PDF