• Title/Summary/Keyword: Sulfatase 2

Search Result 27, Processing Time 0.03 seconds

A Case of Hunter Syndrome Presented with Chronic Purulent Rhinorrhea in 24-month-old Boy (24개월에 만성 화농성 비루를 주소로 내원하여 진단된 헌터 증후군 1례)

  • Kim, I An;Jin, Jang Yong;Park, Jae Ock;Hong, Yong Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.3
    • /
    • pp.160-164
    • /
    • 2015
  • Hunter syndrome(Mucopolysaccharidosis type II, MPS type II) is an X-linked disorder of glycosaminoglycans (GAGs) metabolism caused by an iduronate-2-sulfatase (IDS2) deficiency. A 24-month-old boy visited the department of pediatrics with the chief compliant of chronic purulent rhinorrhea beginning at age one. He had a history of repeated acute otitis media and chronic rhinitis. On physical examination he had a coarse face, enlarged tongue, distended abdomen, joint stiffness, and Mongolian spots at his first visit. The urine GAGs level was elevated at 66.10 mg/mmolCr (reference range, <11.1) and iduronate-2-sulfatase activity in leukocyte was decreased at 0.21 nmol/mg protein/hr (reference range, 18.7-57). Finally with an IDS gene mutational analysis, recombinant known mutation between intron 7 and distal of exon 3 in IDS2 was detected. Recombinant iduronate-2-sulfatase therapy was started without any infusion related reactions. The author highlights the importance of suspecting Hunter syndrome when pediatric patients visit with chronic purulent rhinorrhea which is a common cause of hospital visits for infants and children.

Sulfatase 1 and sulfatase 2 as novel regulators of macrophage antigen presentation and phagocytosis

  • Kim, Hyun-Je;Kim, Hee-Sun;Hong, Young-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.326-336
    • /
    • 2021
  • Background: Sulfation of heparan sulfate proteoglycans (HSPGs) is critical for the binding and signaling of ligands that mediate inflammation. Extracellular 6-O-endosulfatases regulate posttranslational sulfation levels and patterns of HSPGs. In this study, extracellular 6-O-endosulfatases, sulfatase (Sulf)-1 and Sulf-2, were evaluated for their expression and function in inflammatory cells and tissues. Methods: Harvested human peripheral blood mononuclear cells were treated with phytohemagglutinin and lipopolysaccharide, and murine peritoneal macrophages were stimulated with interleukin (IL)-1β for the evaluation of Sulf-1 and Sulf-2 expression. Sulf expression in inflammatory cells was examined in the human rheumatoid arthritis (RA) synovium by immunofluorescence staining. The antigen presentation and phagocytic activities of macrophages were compared according to the expression state of Sulfs. Sulfs-knockdown macrophages and Sulfs-overexpressing macrophages were generated using small interfering RNAs and pcDNA3.1 plasmids for Sulf-1 and Sulf-2, respectively. Results: Lymphocytes and monocytes showed weak Sulf expression, which remained unaffected by IL-1β. However, peritoneal macrophages showed increased expression of Sulfs upon stimulation with IL-1β. In human RA synovium, two-colored double immunofluorescent staining of Sulfs and CD68 revealed active upregulation of Sulfs in macrophages of inflamed tissues, but not in lymphocytes of lymphoid follicles. Macrophages are professional antigen-presenting cells. The antigen presentation and phagocytic activities of macrophages were dependent on the level of Sulf expression, suppressed in Sulfs-knockdown macrophages, and enhanced in Sulfs-overexpressing macrophages. Conclusion: The results demonstrate that upregulation of Sulfs in macrophages occurs in response to inflammation, and Sulfs actively regulate the antigen presentation and phagocytic activities of macrophages as novel immune regulators.

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

A Case Report for a Korean Patient with Mucopolysaccharidosis IIIA Confirmed by Biochemical and Molecular Genetic Investigation (생화학적 검사 및 분자유전학적 검사에 의해 뮤코다당증 제3A형으로 진단된 한국인 환자의 증례 보고)

  • Kim, Borahm;Cho, Sung Yoon;Sohn, Young Bae;Park, Hyung-Doo;Lee, Soo-Youn;Song, Junghan;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Mucopolysaccharidosis (MPS) IIIA is a lysosomal storage disorder caused by abnormalities of the enzyme Heparan N-sulfatase that is required for degradation of heparan sulfate. The patient in this study was a 5 year-old boy who presented with macrocephaly and developmental delay. Urinary excretion of glycosaminoglycan was increased (26 g/moL creatinine, reference range: <7 g/moL creatinine) and a distinct band of heparan sulfate was shown in electrophoresis. Heparan N-sulfatase activity was significantly decreased in skin fibroblasts (0.2 pmoL/min/mg protein, reference range: 9-64 pmoL/min/mg protein). PCR and direct sequencing analysis of the SGSH gene showed compound heterozygous mutations: c.1040C>T (p.S347F) and c.703G>A (p.D235N). This is the first report for a Korean patient with MPS IIIA who was confirmed by biochemical investigation and molecular genetic analyses.

A Case of Hunter Syndrome Diagnosed at Age of 2.5 Year (2.5세에 진단된 헌터증후군 1례)

  • Choi, Miran;Kwun, Younghee;Jin, Dongkyu;Lee, Jieun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.2
    • /
    • pp.178-181
    • /
    • 2014
  • Hunter syndrome (mucopolysaccharidosis type II, MPS II) is a X-linked lysosomal storage disease caused by a deficiency in the lysosomal enzyme, iduronate-2-sulfatase (IDS), leading to accumulation of glycosaminoglycans within lysosomes of many organs and tissues. Since the enzyme replacement therapy was approved and available in the treatment of MPS I, II, VI, early diagnosis and early therapy can bring the better prognosis of disease and the better quality of life in patients. We described a 2.5 year old child presented with frequent otitis media and developmental delay including speech impairment, who was diagnosed as Hunter syndrome with IDS NM_000202.5:c. 263G>A(p.Arg88His) mutation.

Endo-sulfatase Sulf-1 Protein Expression is Down-regulated in Gastric Cancer

  • Gopal, Gopisetty;Shirley, Sundersingh;Raja, Uthandaraman Mahalinga;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.641-646
    • /
    • 2012
  • In our recent report on gene expression in gastric cancer we identified the endo-sulfatase Sulf-1 gene to be up-regulated in gastric tumors relative to apparently normal (AN), and paired normal (PN) gastric tissue samples. In the present report we investigate the protein expression levels of Sulf-1 gene in gastric tumors, AN and PN samples using tissue microarray (TMA) and immunohistochemistry. Expression data was collected from two sets of TMA's containing replicate sections of tissue samples. Scoring data from TMA set-1 revealed a significant difference in Sulf-1 immunoreactivity between tumors and "normals" (PN and AN) (p-value = 0.001928). Also, Sulf-1 expression in tumors was also significantly different from either PN (p-value = 0.019) or AN (p-value = 0.006) samples. Similar results were obtained from analysis of scoring data from the second set of arrays. Comparison of mRNA expression and protein expression in gastric tumor tissues revealed that in 6/20 (30%) tumor samples showed up-regulated protein expression concordant with over-expression of mRNA. However, a discord with mRNA being over-expressed relative to down regulated protein expression was observed in majority 14/20 (70%) of tumor samples. Our study indicates down regulation of Sulf-1 protein expression in gastric tumors relative to PN and AN samples which is discordant with mRNA over-expression seen in tumors.

Birth of a healthy baby after preimplantation genetic diagnosis in a carrier of mucopolysaccharidosis type II: The first case in Korea

  • Ko, Duck Sung;Lee, Sun-Hee;Park, Chan Woo;Lim, Chun Kyu
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.206-210
    • /
    • 2019
  • Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive lysosomal storage disease caused by mutation of the iduronate-2-sulfatase gene. The mutation results in iduronate-2-sulfatase deficiency, which causes the progressive accumulation of heparan sulfate and dermatan sulfate in cellular lysosomes. The phenotype, age of onset, and symptoms of MPS II vary; accordingly, the disease can be classified into either the early-onset type or the late-onset type, depending on the age of onset and the severity of the symptoms. In patients with severe MPS II, symptoms typically first appear between 2 and 5 years of age. Patients with severe MPS II usually die in the second decade of life although some patients with less severe disease have survived into their fifth or sixth decade. Here, we report the establishment of a preimplantation genetic diagnosis (PGD) strategy using multiplex nested polymerase chain reaction, direct sequencing, and linkage analysis. Unaffected embryos were selected via the diagnosis of a single blastomere, and a healthy boy was delivered by a female carrier of MPS II. This is the first successful application of PGD in a patient with MPS II in Korea.

Novel variants of IDS gene, c.1224_1225insC, and recombinant variant of IDS gene, c.418+495_1006+1304del, in Two Families with Mucopolysaccharidosis type II

  • Cheon, Chong Kun
    • Journal of Interdisciplinary Genomics
    • /
    • v.1 no.1
    • /
    • pp.6-9
    • /
    • 2019
  • In this report, the phenotypes of three patients from two families with mucopolysaccharidosis type II (MPS II) are compared: a novel variant and recombinant variant of IDS gene. The results of urine in patients showed a pronounced increase in glycosaminoglycan excretion with decreased iduronate-2-sulfatase enzyme activity in leukocyte, leading to a diagnosis of MPS II. A patient has a novel variant with 1 bp small insertion, c.1224_1225insC in exon 9, which caused frameshifts with a premature stop codon, and two patients have a recombination variant, c.418+495_1006+1304del, leading to the loss of exons 4, 5, 6, and 7 in genomic DNA, which is relatively common in Korean patients. They had different phenotypes even in the same mutation. The patients have now been enzyme replacement therapy with a significant decrease in glycosaminoglycan excretion. Further study on residual enzyme activity, as well as experience with more cases, may shed light on the relationship between phenotypes in MPS II and gene mutations.

A Case of Mucopolysaccharidosis Type 2 Diagnosed Early through Brain MRI (뇌자기공명영상 검사를 통해 조기 발견된 제2형 뮤코다당증 1례)

  • Lee, Yoon kyoung;Cho, Sung Yoon;Kim, Jinsup;Huh, Rimm;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Mucopolysaccharidosis (MPS) is an inherited disease entity associated with lysosomal enzyme deficiencies. MPS type 2, also known as Hunter syndrome, has a characteristic morphology primarily involving x-l inked recessive defects and iduronate-2-sulfatase gene mutation. The purpose of this case report is to provide important clues to help pediatricians identify Hunter syndrome patients earlier (i.e., before the disease progresses). A 30-month-old boy showed developmental delay and decreased speech ability. Physical examinations revealed a flat nose and extensive Mongolian spots. Brain magnetic resonance images (MRIs) showed bilateral multiple patchy T2 hyperintense lesions in the periventricular and deep white matter, several cyst-like lesions in the body of the corpus callosum, and diffuse brain atrophy, which were in keeping with the diagnosis. Based on these findings, the patient was suspected of having MPS. In the laboratory findings, although the genetic analysis of IDS (Iduronate-2-sulfatase) did not show any pathogenic variant, the enzymatic activity of IDS was not detected. We could confirm the diagnosis of MPS, because other sulfatases, such as ${\alpha}$-L-iduronidase, were detected in the normal range. Early enzymatic replacement therapy is essential and has a relatively good prognosis. Therefore, early diagnosis should be made before organ damage becomes irreversible, and brain MRIs can provide additional diagnostic clues to help distinguish the disorder.