• 제목/요약/키워드: Suction-passage flow

검색결과 61건 처리시간 0.028초

스윕을 가진 냉각탑용 쿨링팬 주위의 점성유동 해석 (Numerical Analysis of the Viscous Flow around a Cooling Tower Fan with Sweep)

  • 오건제
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.33-39
    • /
    • 2004
  • Viscous flows around a cooling tower fan with sweep are numerically investigated. The Navier-Stokes equations and the continuity equation are solved in the flow domain. The Reynolds stresses are modelled using the $\kappa-{\varepsilon}$ turbulence model. The governing equations are discretized with the Finite Volume Method. The pressure and the velocity are linked with the SIMPLE algorithme. Flow and pressure characteristics around the fan are investigated. The pressure sharply increases through the fan. Pressure variations on the pressure and suction sides of the fan are well represened in the calculations. The flow streamlines in the blade passage are nearly parallel to the blade.

  • PDF

비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구 (Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade)

  • 윤순현;심재경;이대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는영향에 관한 연구 (Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade)

  • 윤순현;심재경;이대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.393-396
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

소수력발전용 횡류수차의 공기층효과에 의한 성능향상 (Performance Improvement of Cross-Flow type Small Hydro Turbine by Air Layer Effect)

  • 최영도;안영준;신병록;이동엽;이영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1070_1071
    • /
    • 2009
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow hydraulic turbine is proposed for small hydropower development in this study. The turbine‘s simple structure and high possibility of applying to the sites of relatively low effective head and large flow rate can be advantages for the introduction of the small hydropower development. The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. CFD analysis for the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss in the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  • PDF

레이저 3차원 진동측정기와 마이크로폰을 이용한 진공청소기용 팬모터의 실험적인 공력소음 분석 (The Experimental Analysis of Aerodynamic Sound for Fan Motor in a Vacuum Cleaner Using Laser 3-D Scanning Vibrometer and Microphone)

  • 곽이구;안재신;김재열
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.46-51
    • /
    • 2005
  • The vacuum cleaner motor runs at very high speed for suction power. Specially, motor power is provided by the impeller being rotated at very high speed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and small gap distance between the impeller and the diffuser, the level of noise in the centrifugal fan is at BPF(Blade Passage Frequency) and its harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, unsteady flow data are needed. The cause of noise is obtained by dividing the fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, an accelerometer has been used to measure vibration. However, it can not measure vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This study was conducted to perform accurate analysis of vibration and aerodynamic sound for fan motor in a vacuum cleaner using a laser vibration analyzer. A silent fan motor can be designed using the data measured in this study.

회전하는 덕트내 설치된 $70^{\circ}$ 경사요철의 열전달 특성 (Heat Transfer in Rotating Duct with $70^{\circ}$ Angled Ribs)

  • 최청;이세영;원정호;조형희;박병규
    • 한국유체기계학회 논문집
    • /
    • 제4권3호
    • /
    • pp.7-13
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct has staggered ribs with $70^{\circ}$ attack angle, which are attached on leading and trailing surfaces. Naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling passage. The present experiments employ two-surface heating conditions in the rotating duct because the exposed surfaces to hot gas stream are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. Secondary flows are generated by Coriolis and centrifugal forces in the spanwise and streamwise directions. The ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the ribbed wall. The local heat transfer and flow patterns in the passage are changed significantly according to rib configurations and duct rotation speeds. Therefore, the geometry and arrangement of the ribs are important for the advantageous cooling performance. The experimental results show that the ribs enhance the heat transfer more than $70\%$ from that of the smooth duct. The duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The overal heat transfer pattern on the leading and trailing walls for the first and second passes are depended on the rotating speed, but the local heat transfer trend is affected mainly by the rib arrangements.

  • PDF

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

유량에 따른 축류홴의 익단누설와류 특성 (Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 장춘만;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

전향 축류형 홴에서의 익단 누설 유동 구조 (Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan)

  • 이공희;명환주;백제현
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

PIV를 이용한 극저비속도 세미오픈임펠러의 내부유동 계측 (Internal Flow Measurement of Very Low Specific Speed Semi-Open Impeller by PIV)

  • 니시노코이치;이영호;최영도
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.773-783
    • /
    • 2005
  • Internal flow measurement of very low specific-speed semi-open impellers has been carried out by PIV in order to understand better the internal flow patterns that are responsible fur the unique performance of these centrifugal pumps operating in the range of very low specific speed. Two types of impellers, one equipped with six radial blades (Impeller A) and the other with four conventional backward-swept blades (Impeller B), are tested in a centrifugal pump operating at a non-dimensional specific-speed of $n_s=0.24$. Complex flow patterns captured by PIV are discussed in conjunction with the overall pump performance measured separately. It is revealed that Impeller A achieves higher effective head than Impeller B even though the flow patterns in Impeller A are more complex, exhibiting secondary flows and reverse flows in the impeller passage. It is shown that both the localized strong outward flow at the pressure side of each blade outlet and the strong outward through-flow along the suction side of each blade are responsible for the better head performance of Impeller A.