• Title/Summary/Keyword: Suction well

Search Result 186, Processing Time 0.024 seconds

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Measurement of the Nursing Workload by Patient Classification System in a Secondary Hospital;As a Preliminary Step for Computerization of Nursing Staffing and Scheduling (환자분류에 의한 일개 2차 의료기관의 간호업무량 조사;전산화를 위한 기초작업으로서)

  • Park, Jung-Ho;Joe, Hyon;Park, Hyeoun-Ae;Han, Hye-Rah
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.1 no.1
    • /
    • pp.132-146
    • /
    • 1995
  • Even though Korean medical law stipulates that number of patients attended by a nurse is 2.5 for hospitalization and 30 for ambulatory care, the number of patients cared by a nurse per day is much greater than the standard prescribed by the medical law. Current productivity of nurses is not desirable unless the quality of care is considered. And nursing manpower staffing based on neither current nurses' productivity nor standard of medical law cannot respond properly to dynamic situation of the medical services. Under this background, the necessity of more efficient management of nursing manpower occupying 1/3 of total hospital workers has been recognized by many nursing administrators. Many nursing researchers have studied to foretell the nursing manpower objectively on the basis of measured nursing workload according to patient classification as well. Most of These researches, however, have been conducted in the tertiary hospitals, so it is imperative to conduct other researches to predict necessary nursing manpower in the secondary and the primary hospitals. The study was performed to measure nursing workload and predict pertinent nursing manpower to a secondary hospital with 400beds. Nursing workload was surveyed using measuring tool for direct and indirect care hours in a surgical unit and a medical unit. Survey was conducted from Sep.10 to Sep.16 and from Oct.5 to Oct.11, 1994 respectively by two skilled nurses, Subjects were patients, patients' family members and nursing personnels. Results are follows : 1. Patient classification distributed as 22% of class I (mildly ill patient), 57% of class II (moderately ill patient), and 21% of class III (acutely ill patient) in the medical nursing unit, while 23% of class I, 29% of class II, 12% of class III, and 36% of classIV (critically ill patient) in the surgical nursing unit. There was no difference of inpatient number between weekday and weekend. Bed circulation rate was 89% in both units and average patients number per day was 37.4 (total 42beds) in the medical nursing unit, 32.9 (total 37beds) in the medical nursing unit. 2. Direct care hours per day measured as 2.8hrs for class I, 3.3hrs for class II, and 3.5hrs for class III in the medical nursing unit, while 3.1hrs for class I, 3hrs for class II, 2.7hrs for class III, and 2.2hrs for classIV in the surgical nursing unit. Meanwhile, hours for nursing assistant activities per patient by patients' family members were 11mins and 200mins respectively. Direct care hour rate by shift was day 36%, evening 25%, and night 39% in the medical nursing unit, while 40%, 29%, and and 31% respectively in the surgical nursing unit. 3. Measurement and observation activity held 44.2% of direct care activities of nurses and medication 36.7%, communication 11.7%, exercise 1.8%, treatment 1.3%, hygiene 1.3%, elimination and irrigation 1.1%, suction 1%, nutrition 0.5%, thermotherapy 0.3%, oxygen therapy 0.1% in order. 4. Indirect care hours per day were 294.2mins in the medical nursing unit, and 273.9mins in the surgical nursing unit. By shift, evening was the highest in both units. Indirect care hours for each patient were 44.5mins in the medical nursing unit and 46mins in the surgical nursing unit. 5. checking activities including doctor's order, medication, and delivering patients to the next shift occupied 39.7% of indirect care activities, and preparation 26%, recording 23.8%, communication and conference 6.7%, managing equipments 2.1%, messenger activity 1.7% in order. 6. On the ground of these results, nursing manpower needed in a secondary hospital was estimated ; 27 nursing personnels for the medical nursing unit of 37beds, and 20 nursing personnels for the surgical nursing unit of 33beds.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

The Effects of Autologous Blood Pleurodesis in the Pneumothorax with Persistent Air Leak (지속성 기흉에서 자가혈액을 이용한 흉막유착술의 효과)

  • Yoon, Su-Mi;Shin, Sung-Joon;Kim, Young-Chan;Shon, Jang-Won;Yang, Seok-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Chung, Won-Sang;Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.724-732
    • /
    • 2000
  • Background : In patients with severe chronic lung diseases even a small pneumothorax can result in life-threatening respiratory distress. It is important to treat the attack by chest tube drainage until the lung expands. Pneumothorax with a persistent air leak that does not resolve under prolonged tube thoracostomy suction is usually treated by open operation to excise or oversew a bulla or cluster of blebs to stop the air leak. Pleurodesis by the instillation of chemical agents is used for the patient who has persistent air leak and is not good candidate for surgical treatment. When the primary trial of pleurodesis with common agent fails, it is uncertain which agent should be used f or stopping the air leak by pleurodesis. It is well known that inappropriate drainage of hemothorax results in severe pleural adhesion and thickening. Based on this idea, some reports described a successful treatment with autologous blood instillation for pneumothorax patients with or without residual pleural space. We tried pleurodesis with autologous bood for pneumothorax with persistent air leak and then we evaluated the efficacy and safety. Methods : Fifteen patients who had persistent air leak in the pneumothorax complicated from the severe chronic lung disease were enrolled. They were not good candidates for surgical treatment and doxycycline pleurodesis failed to stop up their air leaks. We used a mixture of autologous blood and 50% dextrose for pleurodesis. Effect and complications were assessed by clinical out∞me, chest radiography and pulmonary function tests. Results : The mean duration of air leak was 18.4${\pm}$6.16 days before ABP (autologous blood and dextrose pleurodesis) and $5.2{\pm}1.68$ days after ABP. The mean severity of pain was $2.3{\pm}0.70$ for DP(doxycycline pleurodesis) and $1.7{\pm}0.59$ for ABDP (p<0.05). There was no other complication except mild fever. Pleural adhesion grade was a mean of $0.6{\pm}0.63$. The mean dyspnea scale was $1.7{\pm}0.46$ before pneumothrax and $2.0{\pm}0.59$ after ABDP (p>0.05). The mean $FEV_1$ was $1.47{\pm}1.01$ before pneumothorax and $1.44{\pm}1.00$ after ABDP (p>0.05). Except in 1 patient, 14 patients had no recurrent pneumothorax. Conclusion : Autologous blood pleurodesis (ABP) was successful for treatment of persistent air leak in the pneumothorax. It was easy and inexpensive and involved less pain than doxycycline pleurodesis. It did not cause complications and severe pleural adhesion. We report that ABP can be considered as a useful treatment for persistent air leak in the pneumothorax complicated from the severe chronic lung disease.

  • PDF