• Title/Summary/Keyword: Suction time

Search Result 269, Processing Time 0.02 seconds

Determination of Organic Polyelectrolyte Addition Method to Improve Dewaterbility of Alum Sludge (정수 슬러지의 탈수성 개선을 위한 고분자 응집제 조합주입 고찰)

  • Yu, Taejong;An, Gyunhwan;Park, Sangjun;Hyun, Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.608-618
    • /
    • 2004
  • Since polyelectrolytes have been used as conditioners, conventionally only a single polyelectrolyte has been added for sludge conditioning. However, the amount of polyelectrolyte needed for optimal conditioning of sludge is very critical. Overdosing reduces the sludge dewaterbility. In this experimental study, sludge conditioning with single or dual polyelectrolyte was conducted to avoid problems associated with overdosing. Single polyelectrolyte conditioning was conducted by one of cationic, nonionic, and anionic polyelectrolytes. The dual polyelectrolyte conditioning was performed by adding one polyelectrolyte and another one in sequence. The dewaterbility of sludges were measured by SRF(specific resistance to filtration), TTF(time to filter), CST(capillary suction time) respectively. Additionally, parameters such as turbidity, zeta potential, viscosity of conditioned sludges or supematant were measured to evaluate the changed characteristics of sludge by addition of polyelectrolytes. From the experiment results, it was concluded that single polyelectrolyte conditioning had a high probability of overdosing, whereas dual polyelectrolyte conditioning resulted in a better dewaterbility and less chance of overdosing. But, it was also found that dosing sequence in dual conditioning was very important according to the characteristics of sludge. Parameters such as viscosity, turbidity, zeta potential were found to be useful as a means of evaluating sludge dewaterbility.

Effect of Road Sweeping on the Abatement of Runoff Pollution Loads from in the Highway (고속도로 노면 청소에 따른 강우시 유출오염부하 저감 효과 분석)

  • Kang, Heeman;Lee, Doojin;Yoon, Hunsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.851-860
    • /
    • 2012
  • In this study, to evaluate the abatement of runoff pollution loads by the road sweeping(cleaning), various investigations are implemented at the sample area of the highway. As the results of evaluating the removal efficiency of pollutants along road cleaning, TSS showed about 78 % of the removal efficiency and COD showed 49 % of removal efficiency through the operation of cleaning vehicle of vacuum suction method. In case of TN and TP, they showed the relatively-lower removal efficiency by 30~35 %. TSS removal efficiency along the number of cleaning appeared about 60 % in case of one time of cleaning and the additional removal effect did not appear though the number of cleaning increased to two times. With running speed of cleaning vehicle, TSS removal ratio is lessened from 60 % to 20 % when cleaning vehicle speed up to 20 km/hr from 6 km/hr. It seems that the reasons why the removal efficiencies are inversely proportional to its speed are related to the lower vacuum efficiencies and the disturbed particles on the road. In the pollutant build-up analysis, it is showed that it takes more time to the critical pollutant build-up in the shoulder than the center of the road. It is also showed that the proper cleaning cycle is recommended as 4~6 dry weather days without rainfall events.

Dynamic Stall Control Using Aerodynamic Sensitivity Analysis (민감도 해석을 이용한 동적실속 제어)

  • Ahn, Tai-Sul;Kim, Hyoung-Jin;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.10-20
    • /
    • 2002
  • The present paper investigates methods to control dynamic stall using an optimal approach. An unsteady aerodynamic sensitivity analysis code is developed by a direct differentiation method from a two-dimensional unsteady compressible Navier-Stokes solver including a two-equation turbulence model. Dynamic stall control is conducted by minimizing an objective function defined at an instant instead of integrating for a period of time. Unsteady sensitivity derivatives of the objective function are calculated by the sensitivity code, and optimization is carried out using a linear line search method at every physical time step. Numerous examples of dynamic stall control using control parameters such as nose radius, maximum thickness of airfoil, or suction show satisfactory results.

Effect of Digestion Temperature on the Solid-Liquid Separation Characteristics of Anaerobically Digested Municipal Sewage Sludge (도시하수슬러지의 혐기성소화시 고액분리 특성에 미치는 소화온도의 영향)

  • Han, Jang Woon;Chang, Duk;Kim, Sung Soon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • Laboratory experiments were conducted to investigate the effect of digestion temperature on the settleability and dewaterability of anaerobically digested sludge. The digesters were operated at a hydraulic retention time of 20 days with a loading rate of 0.63~0.66kg volatile solids per cubic meter per day at the temperature of $35^{\circ}C$ and $55^{\circ}C$. A mixed primary and secondary municipal sludge was used as a feed. The interface height of the sludge during settling test was recorded to identify settleability. As a measure of dewaterability of the sludge, specific resistance and capillary suction time were also measured with and without chemical conditioning. Higher digestion efficiency was obtained at $55^{\circ}C$ than $35^{\circ}C$. However, the settleability and dewaterability of the sludge at $35^{\circ}C$ were quite higher than those of the sludge digested at $55^{\circ}C$. The optimum dosages of ferric chloride for sludge conditioning were 0.4% and 0.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. The filtrate COD of the sludge digested at $55^{\circ}C$ was higher than at $35^{\circ}C$, which means that poor dewaterability of the sludge result in high filtrate COD.

  • PDF

Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications (고전도성 부품용 Al-Cu 주조복합재료의 계면 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

A Study on the Conditioning with Polymer and the Particle Size Distribution of Intermittent Aerobic Digestion Sludge (간헐포기 소화 슬러지의 고분자 응집제에 의한 개량과 입도 분포 변화에 관한 연구)

  • Kim, Hee-Jun;Kim, Seong-Hong;Choi, Jae-Seong
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Synthetic organic polyelectrolytes can be used to condition sludges to enhance their dewaterability. Intermittent aerobic digestion is an useful digestion technology and has many advantages like neutral pH, low installation cost and easiness to operation. The objectives of this study were to investigate the dewaterability of intemittent aerobic digestion sludge and to find the relationship between dewaterability and particle size distribution change under the conditioning of intermittent aerobic digestion sludge by cationic polyelectrolyte. Digested sludge from intermittent aerobic digestion was used and cationic polyacrylamide polymer was added as a conditioner. CST(capillary suction time), TTF(time-to-filtration) were tested as a dewaterability index and the number of particle distribution was analyzed using particle size analyzer. The results indicate that cationic polyelectrolytes is useful to enhance dewaterability of intermittent aerobic digestion sludge. Mean particle diameter was increased as polymer dosage increased and its value was reached up to 100 mm on the condition of optimal cationic polymer dosage. CST and TTF are well correlated with mean particle diameter when the weighting order is 1.7. By the optimal conditioning with cationic polymer, particles in the filtrate are also reduced significantly and this means that conditioning is helpful to main stream by reducing SS loading from return flow.

Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System (연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

Effect of Sludge Conditioner on Dewaterability of Sludge Produced from the Anaerobic Digestion of Food Waste (음식물 쓰레기의 혐기성 소화 슬러지의 응집 및 탈수 특성에 미치는 영향)

  • Park, Jong-Bu;Choi, Sung-Su;Park, Seung-Kook;Hur, Hyung-Woo;Han, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.104-110
    • /
    • 2001
  • In this study, the effect of physico-chemical variables on sludge conditioning was determined to enhance dewaterability of effluent produced from the thermophilic anaerobic digestion of food waste. The gas production rate and methane content during the anaerobic digestion of food waste were $1.1m^3/kg$ VS and 63%, respectively, and the biodegradability of volatile solids was 87.5%. The concentrations of CODcr, TKN and TP of effluent from digestor were 18,500mg/L, 2,800mg/L, and 582mg/L, respectively. At the jar test to screen the flocculant for the dewatering of effluent from digestor, $FeCl_3$ and strong cationic polymer were effective on making flocs in the effluent. The condition of flocculation of effluent were 500mg/L of $FeCl_3$ and 50-100 mg/L of strong cationic polymer, respectively. As the result of measuring of dewaterability potential of effluent to determine the mixing ratio between $FeCl_3$ and polymer by capillary suction time(SCT), optimum condition was 500mg/L of $FeCl_3$ and 80mg/L of strong cationic polymer.

  • PDF

Impacts of Rainfall Events and Distribution on Unsaturated Soil Slope Analysis (불포화 토사사면 해석에 대한 강우사상과 분포의 영향)

  • Kim, Jae-Hong;Kim, Ho-Kyum;Kim, Byeongsu;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The time distribution of rainfall is one of the most important considerations for evaluating soil slope stability. In order to study the rainfall-induced slope failure, the rainfall pattern has generally been assumed as uniform rainfall intensity for rainfall duration. However, it should be noted that the time distribution of the design rainfall method has a significant effect on the soil slope instability. The study implemented Mononobe, Huff, and uniform method as three types of time distribution method of the design rainfall to estimate the factor of safety of soil slopes by rainfall duration. As a result, the difference of soil suction and unsaturated hydraulic properties in a soil by rainfall pattern was found through the application of an appropriate time distribution method to numerical simulation for rainfall-induced slope stability.