• 제목/요약/키워드: Suction side

검색결과 189건 처리시간 0.025초

블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어 (Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge)

  • 김정래;문영준;정진택
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.

터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구 (Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제8권1호
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Generation and Suppression of Non-uniform Flow in Scramjet Engines

  • Ben, Hidenori;Watanabe, Toshinori
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.69-74
    • /
    • 2004
  • In scramjet engines with sidewall compression inlet, it is well known that a non-uniform flow appears since a separated region is generated near the flow centerline on the body side. The separated region is caused by shock-boundary layer interaction and likely to cause un-start phenomena since the flow in the separated region is subsonic and acts as a communication path between the isolator and the combustor. In the present study, the non-uniform flow characteristics in the scramjet inlet-isolator region are numerically studied in detail. Effect of flow suction from body sidewall surface on the non-uniform flow field numerically examined to clarify the flow mechanism to suppress the un-start transition.

  • PDF

5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구 (A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center)

  • 장동규;조환영;이희관;공영식;양균의
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

석션압을 이용한 원형강관 가물막이 현장설치 실험 (Field Installation Test of the Circular Steel Cofferdam Using Suction Pressure)

  • 김재현;신진화;이주형
    • 한국지반공학회논문집
    • /
    • 제36권10호
    • /
    • pp.5-19
    • /
    • 2020
  • 해상(또는 수상) 구조물 시공수요가 증가됨에 따라 해양구조물 시공을 용이하게 하는 임시구조물 수요가 증가하고 있다. 가물막이(cofferdam)는 임시구조물로 해상 작업 시 외부로부터 물을 막아 육상과 동일한 작업환경을 제공한다. 하지만, 물 유입을 차단하기 위한 별도의 시공공정이 필요하기 때문에 공사지연과 건설비 증가의 주원인이 되고 있다. 최근 재래식 가물막이의 문제점을 해결하고 경제성을 높이기 위해 석션압(suction pressure)을 이용해 신속하고 경제적으로 시공이 가능한 대구경 원형강관 가물막이 공법이 제안되었다. 본 공법은 원형강관 가물막이 상부가 수면위로 노출된 상태에서 석션압을 이용해 해저면에 관입되고, 시공 후 내부의 물을 외부로 배출하여 강관자체를 가물막이로 활용한다. 본 연구에서는 원형강관 가물막이 공법을 검증하기 위해 직경 5m인 원형강관 가물막이를 제작하고 새만금 지역에서 실증실험을 실시하였다. 실험 중 원형 강관에 작용하는 석션압, 연결부 누수유무, 수직도(경사도), 구조체의 변형을 각각 계측하였으며 실험결과를 분석하였다. 본 연구를 통해 석션압을 이용한 원형강관 가물막이 공법을 검증하였으며, 석션 설치공법이 다양한 해양 구조물 시공에 활용 될 수 있음을 확인하였다.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

열교환기 내부 유로의 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰 (Effects of Corrugation Angle on Local Heat/Mass Transfer in Wavy Duct of Heat Exchanger)

  • 장인혁;황상동;조형희
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.789-799
    • /
    • 2004
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewalls are determined by using a naphthalene sublimation technique. The corrugation angles(${\alpha}$) of the wavy ducts are 145$^{\circ}$, 130$^{\circ}$, 115$^{\circ}$ and 100$^{\circ}$. And the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. The results show that at the low Re(Re $\leq$1000), the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, high heat/mass transfer regions are formed on both pressure-side and suction-side walls. At the high Re(Re $\geq$ 1000), these secondary flows are vanished with helping flow transition to turbulent flow and the regions which show high heat/mass coefficients by flow reattachment are formed on suction side. As corrugation angle decreases, the local peak Sh induced by Taylor-Gortler vortices increase at Re $\leq$1000. At high Re(Re $\geq$ 1000), by the existence of different kind of secondary flows called Dean vortices, non-uniform Sh distribution appears along spanwise direction at the narrow corrugation angle (${\alpha}$=100$^{\circ}$). Average Sh also increase by the enhanced effect of secondary vortices and flow reattachment. More pumping power (pressure loss) is required with the smaller corrugation angle due to the enhancement of flow instability.

1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가 (Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis)

  • 송태훈;장성용;김범수;장중철
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

구호흡 소아환자에서 흡인도관을 이용한 $N_2O-O_2$ 진정 ([ $N_2O-O_2$ ] INHALATION SEDATION WITH SUCTION CATHETER IN FULL MOUTH BREATHING PATIENTS)

  • 윤형배
    • 대한소아치과학회지
    • /
    • 제26권4호
    • /
    • pp.589-594
    • /
    • 1999
  • 소아치과 환자에서 협조가 안 되는 환자의 진료시 여러 가지 방법의 진정요법이나 다른 방법이 이용된다. 이 중에서도 최근의 경향은 약물을 이용하여 진정을 시행하는 방법이 주로 이용된다. 약물 투여방법 중에서도 흡입가스를 이용하여 진정을 유발하는 경우가 장점이 많아 최근 사용이 증가하는 추세이다. 흡입가스를 이용한 경우 폐를 통해 약물이 흡수되므로 적절한 진정수준에 도달하기 위해서는 환자의 호흡양상이 주 영향을 끼친다. 가스를 이용한 흡입진정 시에는 환자가 반드시 비호흡을 하여야 폐를 통해 흡수가 되므로 구호흡을 하는 경우는 정맥로를 이용한 진정이나 기관내삽관을 필요로 한다. 저자는 $N_2O-O_2$를 이용한 진정요법을 시행하는 중에 완전한 구호흡을 하는 환자를 기관내삽관을 하지 않고 끝 부분이 둥글고 유연한 흡인도관을 사용하여 아산화질소를 투여함으로서 만족할 만한 결과를 얻었기에 이에 보고 한다.

  • PDF

원심 압축기 임펠러 출구 유동에 관한 실험적 연구 (Experimental study on impeller discharge flow of a centrifugal compressor)

  • 신유환;김광호;손병진
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.483-494
    • /
    • 1998
  • This study describes the characteristics on impeller discharge flow of a centrifugal compressor with vaneless diffuser. Distorted flow at impeller exit was investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. As a result, a wake region appears near shroud side and moves to suction side and also to hub side as flow rate decreases. Jet, wake, and their boundary region which can be defined in jet-wake flow model are clearly observed at a high flow rate for the flow coefficient of 0.64, however, as flow rate decreases to the flow coefficient of 0.19, the classification of their regions disappears. Turbulence intensity also increases as flow rate decreases. Measurement error from uncertainty analysis is estimated about 4% at the flow coefficient of 0.19

  • PDF