• Title/Summary/Keyword: Suction anchor

Search Result 23, Processing Time 0.022 seconds

Centrifuge Model Tests on the Pullout Capacity of Embedded Suction Anchor without Flanges in Sand layer (모래지반에 매입된 날개없는 석션앵커의 인발력에 대한 원심모형실험)

  • Kim, Kyoung-O;Kim, You-Seok;Ko, Boo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.517-520
    • /
    • 2005
  • The embedded suction anchor(ESA) is and anchor that is driven by a suction pile. The cross-sectional shape of the ESA anchor is circle. Its diameter is the same as that of the suction pile that is used to drive it into the seafloor. For the installation, the anchor is attached to the tip of the suction pile and then driven as a unit with the pile by and applied suction pressure. Once the ESA anchor reaches the desired depth, the pile is retrieved by applying a positive pressure. Finally, only the ESA anchor remains in the soil layer. This paper presents the results of centrifuge model tests to investigate ESA pullout capacity. The main parameters that have effects on the pullout capacity of ESA may include g-level, embedded depth, direction of loading, and loading point. The results of tests show that the pullout loading capacities increase as the loading point shift toward the tip of the anchors for a given loading direction. They also indicate that the loading point associated with the maximum pullout loading capacity is located at approximately 67 percent of the anchor length from the top for the horizontal load.

  • PDF

Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand (세립 사질토 지반에 설치된 석션 앵커의 수평 지지력)

  • Kim, Surin;Choo, Yun Wook;Kim, Dong-Soo;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.

Investigation of the Rotational Displacement of the Suction Anchor Subjected to the Inclined Pullout Load in Silty Sand (사질토 지반에서 경사 인발 하중을 받는 석션 앵커의 회전 거동 평가)

  • Bae, Jun-Sik;Jeong, Yeong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.267-273
    • /
    • 2020
  • Suction anchors are used for floating structures because they have advantages in installation and stability. Recently, the demand for floating structures requiring low allowable displacement has increased. Thus, it is strongly suggested that the displacement of the suction anchor be evaluated. However, conventional studies regarding suction anchors have concentrated on the capacity of the anchor, and research on the displacement of the anchor is limited. In particular, rotation is the primary behavior of a suction anchor subjected to an inclined load, and related information has been insufficient. Therefore, the main objective of this paper is to investigate the rotation behavior of a suction anchor via centrifuge model tests. The experimental parameters are the inclination of the pull-out load, anchor dimensions, and aspect ratio. The rotation values of suction anchors were compared using a series of load-rotation curves. The results show that the inclination of the load has a dominant influence on the rotation behavior of the suction anchor.

Numerical Analysis of Group Suction Anchor of Parallel Arrangement Installed in Sand Subjected to Pullout Load (모래지반에 설치된 병렬식 그룹석션앵커의 인발하중에 대한 수치해석 연구)

  • Kim, Surin;Choo, Yun Wook;Kwon, Osoon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.61-69
    • /
    • 2014
  • In this study, the performance of group suction anchors installed in sand and subjected to pullout loading was investigated by numerical analysis. The group suction anchors consist of two or three units rigidly connected to each other in parallel array and the pullout resistances were compared with that of a single anchor. Parametric study was performed using numerical models to study the effect of the physical conditions of the group anchor. The parameters include the skirt length to diameter ratio of a unit suction anchor, the pad-eye location, inclination of loading and the spacing between unit suction anchors. The analysis shows that the ratios of the pullout capacity of double suction anchor and triple suction anchor to that of single anchor are 1.7 and 2.4, respectively. The ratio increases with the increase in the spacing between the unit anchors. The other parameters such as the skirt length to the diameter ratio, the location of the pad-eye and the loading inclination have negligible effect on the ratio of pullout resistances of the group anchor to the single anchor.

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

Analytical study of the failure mode and pullout capacity of suction anchors in clay

  • Liu, Haixiao;Wang, Chen;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.79-95
    • /
    • 2013
  • Suction anchors are widely adopted in mooring systems. However there are still challenges in predicting the failure mode and ultimate pullout capacity of the anchor. Previously published methods for predicting the inclined pullout capacity of suction anchors are mainly based on experimental data or the FEM analysis. In the present work, an analytical method that is capable of predicting the failure mode and ultimate pullout capacity of the suction anchor in clay under inclined loading is developed. This method is based on a rational mechanical model for suction anchors and the knowledge of the mechanism that the anchor fails in seabed soils. In order to examine the analytical model, the failure angle and pullout capacity of suction anchors from FEM simulation, numerical solution and laboratory tests in uniform and linear cohesive soils are employed to compare with the theoretical predictions and the agreement is satisfactory. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work proves that the failure mode and pullout capacity of suction anchors can be reasonably determined by the developed analytical method.

Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique (ALE 기법을 이용한 모래지반에서 석션 매입 앵커의 인발 거동 분석)

  • Na, Seon Hong;Jang, In Sung;Kwon, O Soon;Lee, Seung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2014
  • The embedded suction anchor, ESA, is one type of mooring anchor systems which utilizes the suction pile or caisson to penetrate the anchor into the sea bed and develops its capacity under pullout load. In this study, the numerical analysis using ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to simulate the pullout behavior of the ESA, and the results were compared to those of the previous research, centrifuge model tests and the analytical method based on limit equilibrium theory. The pullout behaviors of the ESA under horizontal, vertical, and inclined loading were evaluated. The analysis results showed that the maximum horizontal pullout load was developed when the location of loading point was at the mid-point, and the each vertical pullout load gave the similar value regardless of the locations of the loading points. The pullout load decreased as the load inclination angle increased at the mid-point of the anchor.

Influence of Suction Force of Plate Anchor Embedded in Kaolinite (Kaolinite에 근입된 앵커에서 흡입력이 미치는 영향)

  • 이준대;이봉직
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.108-113
    • /
    • 1997
  • Plate anchors are primarily used in the foundation construction of earth-supported and earth-retaining structures. In order to estimate uplift capacity as well as suction force of clay, model tests were peformed with respect to various embedment depths and two different moisture contents in the prepared saturated kaolinite. Further, suction effects on the ultimate uplift capacity, at the various embedment depths of anchor, were also taken into account. Test results show that ultimate uplift capacity including suction force increases from 4.2kg at H/D=1 upto 11.6kg at H/D=5 in K1 and from 2.3kg at H/D=1 upto 7.3kg at H/D=5 in K2 respectively. The ratio of $F_s/Q_n/$ decreases along with the increases in the embedment ratio. In general, mud suction force under the ultimate uplift capacity in kaolinite decreases or becomes constant along with the increase of the embedment ratio.

  • PDF

Uplift Capacity of a Plate Anchor Considering Suction Effects

  • Seo, Young-Kyo;Kim, Tae-Hyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Anchors have been commonly used to as foundation systems of the structures that require the uplift resistance. Recently anchors have been used in ocean sediment for mooring systems to stabilizeoffshore structures. In the saturated clayey soil however suction developed between the soil and andchor and affects the uplift capacity of anchor. To estimate the uplift capacity of the andchor accurately, the failure mechanisms of the andchor by the uplift force should also be correctly assumed. The uplift capacity is usually expressed in terms of breakout factors with respect to embedment ratio. In this paper, a two-dimensional plane strain numerical investigation into the vertical uplift capacity of a plate andchor in a clayey soil is described. The breakout factor against their corresponding values of embedment ratio was calculated and plotted along a single curve. The modes of failure mechanism at shallow and deep andchors are also presented.

Analytical Parametric Study on Pullout Capacity of Embedded Suction Anchors (매입된 석션앵커의 인발력에 대한 분석적 매개변수의 연구)

  • Boonyong, Sorrawas;Park, Ki Chul;Kim, In Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.182-189
    • /
    • 2015
  • The Embedded Suction Anchor (ESA) is a type of permanent offshore foundation that is installed by a suction pile. To increase the loading capacity against pullout, three wings (vertical flanges) are attached along the circumference at 120 degrees apart. Analytical parametric study using the proposed analytical solution method has been conducted to identify the effects of several parameters that are thought to influence the behavior of ESAs. The analysis results show that the pullout capacity increases as the anchor depth and the soil strength increase, and decreases as the load inclination angle increases. The anchor having square projectional area and being pulled horizontally at the middle of its length provides the highest pullout capacity.