• Title/Summary/Keyword: Suction Air Flow

Search Result 156, Processing Time 0.026 seconds

Assessment of Air Flow Misalignment Effects on Fume Particle Removal in Optical Plastic Film Cutting Process

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 2020
  • Many types of optical plastic films are essential in optoelectronics display unit fabrication and it is important to develop high precision laser cutting methods of optical films with extremely low level of film surface contamination by fume particles. This study investigates the effects of suction and blowing air motions with air flow misalignment in removing fume particles from laser cut line by employing random particle trajectory simulation and probabilistic particle generation model. The computational results show fume particle dispersion behaviors on optical film under suction and blowing air flow conditions. It is found that suction air flow motion is more advantageous to blowing air motion in reducing film surface contamination outside designated target margin from laser cut line. While air flow misalignment adversely affects particle dispersion in blowing air flows, its effects become much more complicated in suction air flows by showing different particle dispersion patterns around laser cut line. It is required to have more careful air flow alignment in fume particle removal under suction air flow conditions.

Effect of the Suction Air Temperature on the Performance of a Positive Displacement Air Compressor (흡입공기 온도에 의한 용적형 공기 압축기 성능 변화)

  • Jang, Ji-Seong;Han, Seoung-Hun;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Pneumatic systems are widely applied in various industry because it have a many advantage(low cost, high safety, etc.). Air compressors supply the working fluid to the pneumatic systems and consume a lot of electrical energy at the manufacturing site. The one of the suggested idea is to reduce the energy consumption by reducing the suction temperature of the air compressor and increasing the discharge flow rate. In this paper, the discharge flow rate and air power of the positive displacement type air compressor is simulated by changing the temperature of suction air and the relationship between the suction air temperature and the performance variation of the air compressor is analyzed. As a result, we know that as the suction temperature of air is lowered, the discharge mass flow-rate is increased, but the specific enthalpy is reduced rather than increased, which means that the power of the discharged air is not greatly increased even if lower the suction air temperature.

Gasoline Spray Characteristics Impinging onto the Wall Surface in Suction Air Flow

  • Kim, Woo-Tae;Kang, Shin-Jae;Park, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1376-1385
    • /
    • 2000
  • This study investigates spray characteristics before and after wall impingingment of gasoline spray in suction air flow. For this study, a rectangular model intake port was made of acrylic glass, and suction air was generated by using the forced air blower contrariwise. The injector for this study was a pintle-type port gasoline injector in which an air-assist adaptor is installed to supply assisted air. A PDPA system was employed to simultaneously measure the size and velocity of droplets near the wall. Measured droplets are divided into "pre-impinging droplets"with positive normal velocity and "post-impinging droplets"were negative normal velocity for the suction flow. The velocities, size distributions and Sauter mean diameter(SMD) of pre-and post-impinging droplets for varions injection angles and air-assists are comparatively analyzed.

  • PDF

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream (흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구)

  • 김원태;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Airflow Characteristics of Natural Air Drying for Rough Rice (벼 상온통풍건조시설의 송풍특성)

  • Lee, Hyo-Jai;Kim, Hoon;Han, Jae-Woong
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.3
    • /
    • pp.391-397
    • /
    • 2013
  • This study was conducted to define the characteristics of the fan according to the bed depth of rough rice for the silo used in South Korea. In this study, the characteristics like air flow resistance and air flow rate of the fan were investigated for an independent blowing system with 1 fan and the serial blowing system with 2 fans. In the experiment, the depth of rough rice was determined by 0, 1, 2, 3.2 and 4.5 m for an independent blowing system and the depth of rough rice was 4.5 m for the serial blowing system. The air flow resistances of the blowing fan and the suction fan in an independent blowing system were 55 mmAq and 88 mmAq respectively. In addition, the air flow resistance of the serial blowing system was 61% lower than the blowing fan and 28% lower than the suction fan of the independent blowing system. The air flow rates of the blowing fan and the suction fan in the serial blowing system were 516 $m^3/min$, 570 $m^3/min$, respectively. The former was 22% higher than the blowing fan while the latter was 29% higher than the suction fan in the independence blowing system. In other words, the serial blowing system was superior to the independent blowing system in blowing characteristics because the air flow rate was lower and air flow resistance was higher than the independent blowing system. However, the fan power consumption of the serial blowing system was more than 100% comparing with the independent blowing system.

A Study on the Collision Nozzle for Generating Microbubble by Self-Suction Method (자흡방식에 의해 마이크로버블을 발생시키는 충돌 노즐에 대한 연구)

  • Woo-Jin Kang;Sang-Hee Park;Seong-Hun Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1047-1053
    • /
    • 2023
  • An experimental study was performed on the collision nozzle system that generates microbubble by air self-suction using a venturi nozzle. This study experimentally investigates the pressure of a pump and a dissolution tank, water flow rate, air self-suction amount and microbubble generation amount. The experimental conditions were varied by changing the diameter of the collision nozzle (de=4,5,6,7,8mm), the pumping power(0.5hp, 1.0hp) and the capacity of the dissolution tank(4.4L, 8/8L). The pressure change of the pump according to the outlet diameter of the collision nozzle showed that the 1.0hp pump power operated more stably than the 0.5hp pump. The pressure change in the dissolution tank was shown to decrease rapidly as the outlet diameter of the nozzle increased. The flow rate of recirculating water was shown to increase as the nozzle diameter increased. Additionally, it was shown that the pump capacity of 1.0hp increased the flow rate more than that of 0.5hp. The self-suction air flow rate was shown to occur above de=6mm, and the air flow rate increased as the nozzle diameter increased. Also, as the pump capacity increased, the self-suction amount of air increased. It was shown that the amount of microbubble less than 50mm generated was maximum when the nozzle diameter was 6mm, the pump power was 1.0hp, and the dissolution tank capacity was 8.8L.

Flow control of air blowing and vacuuming module using Coanda effect (코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The efficiency of railway track cleaning vehicle for eliminating fine particulate matter (PM10 and PM2.5) in a subway tunnel depends strongly on the structure of the air blowing and suction system installed under the train. To increase the efficiency of underbody suction system, this paper proposes a novel method to use the Coanda effect for the air blower and dust suction module. In particular, through Computational Fluid Dynamics (CFD) analysis, the flow control device induced by the Coanda effect enables an increase in the overall flow velocity and to stabilize the flow distribution of the suction module at a control angle of $90^{\circ}$. In addition, the flow velocity drop at the edge of the air knife-type blower can be improved by placing small inserts at the edge of the blower. Those 4 modular designs of the dust suction system can help remove the dust accumulated on the track and tunnel by optimizing the blowing and suction flows.

Application of Micro Cross-Flow Turbine to Water Supply System (마이크로 관류수차의 상수도 관로시스템 적용에 관한 연구)

  • Choi Young-Do;Kurokawa Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.36-43
    • /
    • 2006
  • Recently, micro hydropower and it's useful utilization are taking a growing interest as a countermeasure of global worming by carbon dioxide and exhaustion of fossil fuel. The purpose of this study is to investigate the possibility of extracting micro hydropower wasted by a valve in water supply system using micro cross-flow hydraulic turbine. In order to fulfill the functions of controlling flow rate and pressure in substitute for the valve, air and water are supplied into an air suction hole which is installed on the side wall of micro cross-flow hydraulic turbine. The results show that in case of supplying a lot of air into the air suction hole, about 50% of flow rate and relatively high value of loss coefficient are controlled by the turbine. Moreover, including high possibility of applying the micro cross-flow turbine to water supply system, extended application of the turbine to the water discharge system of drainage and irrigation canal.