• Title/Summary/Keyword: Succinate

Search Result 397, Processing Time 0.029 seconds

Sensitivity of the Pyrenophora teres Population in Algeria to Quinone outside Inhibitors, Succinate Dehydrogenase Inhibitors and Demethylation Inhibitors

  • Lammari, Hamama-Imene;Rehfus, Alexandra;Stammler, Gerd;Benslimane, Hamida
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.218-230
    • /
    • 2020
  • Net blotch of barley caused by Pyrenophora teres (Died.) Drechsler, is one of the most destructive diseases on barley in Algeria. It occurs in two forms: P. teres f. teres and P. teres f. maculata. A total of 212 isolates, obtained from 58 fields sampled in several barley growing areas, were assessed for fungicide sensitivity by target gene analysis. F129L and G137R mitochondrial cytochrome b substitution associated with quinone outside inhibitors (QoIs) resistance, and succinate dehydrogenase inhibitors (SDHIs) related mutations (B-H277, C-N75S, C-G79R, C-H134R, and C-S135R), were analyzed by pyrosequencing. In vitro sensitivity of 45 isolates, towards six fungicides belonging to three chemical groups (QoI, demethylase inhibitor, and SDHI) was tested by microtiter technique. Additionally, sensitivity towards three fungicides (azoxystrobin, fluxapyroxad, and epoxiconazole) was assessed in planta under glasshouse conditions. All tested isolates were QoI-sensitive and SDHI-sensitive, no mutation that confers resistance was identified. EC50 values showed that pyraclostrobin and azoxystrobin are the most efficient fungicides in vitro, whereas fluxapyroxad displayed the best disease inhibition in planta (81% inhibition at 1/9 of the full dose). The EC50 values recorded for each form of net blotch showed no significant difference in efficiency of QoI treatments and propiconazole on each form. However, in the case of fluxapyroxad, epoxiconazole and tebuconazole treatments, analysis showed significant differences in their efficiency. To our knowledge, this study is the first investigation related to mutations associated to QoI and SDHI fungicide resistance in Algerian P. teres population, as well as it is the first evaluation of the sensitivity of P. teres population towards these six fungicides.

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Mercury Stress (생분해되는 다양한 킬레이트들이 수은에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sangman
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • Phytoextraction is a technique that uses plants to remediate metal-contaminated soils. However, this technique cannot be applied in highly metal-contaminated areas, as plants cannot normally grow under such conditions. Therefore, this study investigated the introduction of various biodegradable chelating agents to increase the bioavailability of metals in highly metal-contaminated areas. Mercury (Hg) was selected as the target metal, while cysteine (Cys), histidine (His), malate, succinate, oxalate, citrate, and ethylenediamine (EDA) were used as biodegradable chelating agents. Plants were grown on agar media containing various chelating agents and Hg to analyze the effect on plant root growth. Cys and EDA were both found to diminish the inhibitory effect of Hg on plant root growth, whereas His, citrate, and ethylenediamine tetraacetic acid (EDTA) did not show any significant effects, and malate, succinate, and oxalate even promoted the inhibitory effect of Hg on plant root growth. Thus, Cys and EDA would seem to be promising biodegradable chelating agents for highly Hg-contaminated areas.

Comparative Analysis of decreased Mental state Patients after Overdose with Sedative-hypnotics (진정수면제 음독 후 의식저하로 내원한 환자의 급성중독 비교)

  • Oh, Seung Jae;Cho, Soo Hyung;Ryu, So Yeon
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2022
  • Purpose: This study was undertaken to investigate how sedative-hypnotics affect the occurrence and severity of the patient's symptoms. In addition, we conducted a study to determine the type of patients who reacted severely and required hospitalization; patients were accordingly classified as hospitalized patients and patients discharged from the emergency room. Methods: From January 2017 to December 2019, we investigated the demographics, drug information, history, laboratory tests, and severity of patients who visited our emergency department and were diagnosed with benzodiazepine, zolpidem, and doxylamine succinate overdose. We further compared details of hospitalized patients and discharged patients. Results: Subjects who had overdosed and visited the ED included 120 for benzodiazepine, 147 for zolpidem, and 27 for doxylamine succinate. Comparisons between the three groups revealed differences in their early diagnosis, psychiatric history, and sleep disturbance. Differences between groups were also determined for mental state, poisoning history, treatment received in the intensive care unit, and intubation and ventilator support. In cases of benzodiazepine overdose, we obtained a high hospitalization rate (40.0%), admission to the intensive care unit (24.2%), and intubation rate (18.3%). Comparisons between hospitalized patients and discharged groups showed differences in transferred patients, early diagnosis, and mental state. Conclusion: Patients poisoned by sedative-hypnotics are increasing every year. In cases of benzodiazepine and zolpidem, the hospitalization rates were high, and benzodiazepine overdose resulted in hospitalization, intensive care unit admission, and pneumonia in a majority of cases. Therefore, active treatment and quick decisions in the emergency room are greatly required.

Synthesis of Aliphatic Ester-Carbonate Copolymer (지방족 에스터-카보네이트 공중합체의 합성)

  • Kim, Dong-Kook;Kim, Ki-Seab;Chang, Young-Wook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.970-976
    • /
    • 1996
  • An ester-carbonate copolymer was synthesized, in which carbonate was inserted into a biodegradable aliphatic polyester, poly(butylene succinate) (PBS), to modify its mechanical properties. The synthesis was carried out by condensation reactions in two steps. In the first step, oligo(butylene succinate) was prepared by the reaction of succinic acid with 1,4-butanediol (BD). In the second step, it was reacted with oligohexamethylenecarbonate diol (OHMCG) to prepare the ester-carbonate copolymer. Titanium(IV) isopropoxide (TIP) was used as a catalyst for the reaction. The structure of the copolymer was confirmed by FT-IR and $^1H$-NMR and the thermal behavior and mechanical properties were investigated by differential scanning calorimetry (DSC) and universal testing machine (UTM), respectively. It was found that optimum amount of the catalyst for the formation of high molecular weight copolymer was 1wt% for succinic acid. When the BD:OHMCG is in the range 149:1~249:1, the copolymer with high viscosity was obtained. As the OHMCG content was increased, melting temperature ($T_m$) of the copolymer was decreased. When BD:OHMCG is 149:1, the copolymer showed a increase in ultimate strain by two times and the slight decrease in modulus compared to those of PBS.

  • PDF

Formation of D-Glucose Isomerase by Streptomyces sp. (Streptomyces sp.에 의한 포도당 이성화효소의 생성)

  • Rhee, In-Koo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.173-180
    • /
    • 1980
  • A source of D-xylose was required for the enhanced production of D-glucose isomerase of Streptomyces sp. strain K-17. D-glucose supported the luxuriant growth of the organism as well as D-xylose, but D-glucose isomerase activity was hardly detected in the D-glucose-grown cells. When the D-glucose-grown cells were incubated aerobically for a few hours in 0.5% xylose solution in 0.05 M phosphate buffer, pH 7.0, it was found that inductive formation of D-glucose isomerase occurred in the cells without multiplication. In the non-growth phase of cells the inductive formation of D-glucose isomerase occurred because a source of nitrogen for the synthesis of enzymes was obtained from turnover of protein accumulated in cells. D-ribose, L-arabinose, D-glucose, D-mannose, citrate, succinate and tartrate could not induce the formation of D-glucose isomerase, but D-xylose could induce. Inductinn of D-glucose isomerase was repressed by D-glucose and its catabolites : glycerol, succinate and citrate. Inductive formation of the enzymes in the non-growth phase was stimulated by $Ba^{2+}$, $Mg^{2+}$ and $Co^{2+}$, and inhibited by C $u^{2+}$, C $d^{2+}$, A $g^{+}$and H $g^{2+}$. The synthesis of enzymes in the induction system composed of 0.5% xylose solution was disrupted by actinomycin D, streptomycin, chloramphenicol, kanamycin, tetracycline, p-chloromercuribenzo ate, arsenate and 2, 4-dinitrophenol, but not disrupted by mitomycin C and penicillin G.icillin G.

  • PDF

Generation of Superoxide Radical from Rat Brain Mitochondria and Mechanism of Its Toxic Action to Mitochondrial and Extra-mitochondrial Components (흰쥐 뇌 미토콘드리아에 의한 superoxide radical의 생성과 이 radical이 미토콘드리아 및 미토콘드리아 외 물질에 대한 독작용과 그 기전에 관한 연구)

  • Roh, Jae-Kyu;Pyo, Jang-Geun;Chung, Myung-Hee;Lim, Jung-Kyoo;Myung, Ho-Jin
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.12-26
    • /
    • 1985
  • The generation of $O^{-}_{2}{\cdot}$ and its toxic effects were studied with rat brain mitochondria. The production of $O^{-}_{2}{\cdot}$ from mitochondria in the presence of succinate and antimycin was demonstrated by SOD-inhibitable reduction of NBT. Although succinate can support the $O^{-}_{2}{\cdot}$ formation, the highest rate needs antimycin indicating that blockade of electron flow in the respiratory chain augments the univalent reduction of molecular oxygen. Under this condition, $H_2O_2$ was also observed to be produced. But its formation appears to be derived from the dismutation of the primary product, $O^{-}_{2}{\cdot}$ since the rate of $H_2O_2$ production was markedly decreased by NBT and ferricytochrome c. The $O^{-}_{2}{\cdot}$ and $H_2O_2$ produced were able to cause toxic actions to mitochondrial and extra-mitochondrial components as shown by lipid peroxidation of mitochondrial membrane, and inactivation and lysis of isocitrate dehydrogenase and erythrocytes added to the medium, respectively. In all the toxic actions observed, $Fe^{++}$ was required. It appears that in the toxic actions $OH{\cdot}$ generated from the iron-catalyzed Haber-Weiss reaction acts as a mediator. This was supported by the finding that mitochondria in the presence of succinate and antimycin produced ethylene from methional, and $Fe^{++}$ added increased the ethylene production. The observed toxic actions of mitochondrial $O^{-}_{2}{\cdot}$ may provide evidence supporting a potential role of mitochondria as a source of oxygen radicals to cause tissue damage.

  • PDF

Isolation and Identification of Antioxidants from Makgeolli (막걸리로부터 항산화 화합물의 단리.정제 및 동정)

  • Wang, Seung-Jin;Lee, Hyoung-Jae;Cho, Jeong-Yong;Park, Keun-Hyung;Moon, Jae-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.14-20
    • /
    • 2012
  • The present study was carried out to isolate and identify of antioxidants from makgeolli. Makgeolli (3 L) was filtered and the residue was extracted by MeOH. The combined filtrates and MeOH extracts were successively solventfractionated by n-hexane, EtOAc, and BuOH. In the antioxidative activity against DPPH and $ABTS^+$ radicals of each fraction obtained after solvent-fractionation, EtOAc and BuOH layers showed higher activities than other fractions. Therefore, the two layers were respectively purified by column chromatography and HPLC. The isolated compounds were subjected to NMR and MS analyses and identified as 4-hydroxybenzaldehyde (1, 2.0 mg), 2-(4-hydroxyphenyl)ethanol (2, tyrosol, 15.3 mg), trans- and cis-ferulic acids (3 and 4, 1.2 mg), 1H-indole-3-ethanol (5, tryptophol, 3.4 mg), dimethyl succinate (6, 14.9 mg), succinic acid (7, 7.4 mg), and mono-methyl succinate (8, 7.8 mg). The presence of 1-5 in makgeolli have never before been reported.

Herbicide Resistance in Plant Tissue Culture (식물체(植物體) 조직배양(組織培養)과 제초제(除草劑) 저항성(抵抗性))

  • Kim, Kil-Ung
    • Korean Journal of Weed Science
    • /
    • v.5 no.1
    • /
    • pp.9-13
    • /
    • 1985
  • This study was conducted to evaluate herbicide resistant plant through tissue culture. Callus was induced from embryos of Echinochloa crusgalli Beauv. (var, oryzicola Ohwi, var. caudata Kitagawa and var, crusgalli). An optium medium for callus induction and succinate dehydrogenase activity in inducted callus were detected and callus growth of various varieties of Echinochloa crusgalli was assessed under the treatment of various rates of butachlor[N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide]. MS medium seemed to be the most appropriate to induce callus from the embryos of varieties of E. crusgalli by using 2,4-D about 5.5mg/l as a hormone source. The activity of succinate dehydrogenase in inducted callus showed positive reaction against to TTC(2,3,5-triphenyltetrazolium chloride) regardless of concentrations of butachlor and varieties of E. crusgalli, indicating that all the callus induced were alive. The callus growths derived from seeds of E, cnesgalli were greatly affected by various rates of butachlor and were completely inhibited at the highest concentration of butachlor, $10^{-3}M$, regardless of varieties of E. crasgalli. $10^{-6}M$ of butachlor inhibited 24.6% of the callus growth of E. crusgalli Beauv, var. oryzicola Ohwi, while E. crusgalli Beauv. var. crusgalli showed 42% of inhibition, showing that there was difference in response of varieties of E. crusgalli Beauv. to butachlor.

  • PDF