• Title/Summary/Keyword: Successive earthquakes

Search Result 27, Processing Time 0.025 seconds

Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes (연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가)

  • Shin, Jiuk;Kim, JunHee;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes (연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구)

  • Kim, Subin;Kim, Haewon;Park, Jaeeun;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea

  • Kim, Jae Wook;Joo, Han Young;Kim, Rinah;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.512-518
    • /
    • 2018
  • This article measured and analyzed the indoor radon concentrations at one university building in Gyeongju, Republic of Korea, to investigate if there is any relationship between earthquakes and indoor radon concentration. Since 12 September 2016, when two 5.1 and 5.8 magnitude earthquakes occurred, hundreds of aftershocks affected Gyeongju until January 2017. The measurements were made at the ground floor of the Energy Engineering Hall of Dongguk University in Gyeongju over a period between February 2016 and January 2017. The measurements were made with an RAD7 detector on the basis of the US Environmental Protection Agency measurement protocol. Each measurement was continuously made every 30 minutes over the measurement period every month. Among earthquakes with 2.0 or greater magnitude, the earthquakes whose occurrence timings fell into the measurement periods were screened for further analysis. We observed similar spike-like patterns between the indoor radon concentration distributions and earthquakes: a sudden increase in the peak indoor radon concentration 1-4 days before an earthquake, gradual decrease before the earthquake, and sudden drop on the day of the earthquake if the interval between successive earthquakes was moderately longer, for example, 3 days in this article.

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.

Seismic assessment and retrofitting measures of a historic stone masonry bridge

  • Rovithis, Emmanouil N.;Pitilakis, Kyriazis D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.645-667
    • /
    • 2016
  • The 750 m long "De Bosset" bridge in the Cephalonia Island of Western Greece, being the area with the highest seismicity in Europe, was constructed in 1830 by successive stone arches and stiff block-type piers. The bridge suffered extensive damages during past earthquakes, such as the strong M7.2 earthquake of 1953, followed by poorly-designed reconstruction schemes with reinforced concrete. In 2005, a multidisciplinary project for the seismic assessment and restoration of the "De Bosset" bridge was undertaken under the auspices of the Greek Ministry of Culture. The proposed retrofitting scheme combining soil improvement, structural strengthening and reconstruction of the deteriorated masonry sections was recently applied on site. Design of the rehabilitation measures and assessment of the pre- and post-interventions seismic response of the bridge were based on detailed in-situ and laboratory tests, providing foundation soil and structural material properties. In-situ inspection of the rehabilitated bridge following the strong M6.1 and M6.0 Cephalonia earthquakes of January 26th and February 3rd 2014, respectively, revealed no damages or visible defects. The efficiency of the bridge retrofitting is also proved by a preliminary performance analysis of the bridge under the recorded ground motion induced by the above earthquakes.

Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System (초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델)

  • Shin, Jiuk;Jeon, Jong-Su;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Maximum damage prediction for regular reinforced concrete frames under consecutive earthquakes

  • Amiri, Gholamreza Ghodrati;Rajabi, Elham
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.129-142
    • /
    • 2018
  • The current paper introduces a new approach for development of damage index to obtain the maximum damage in the reinforced concrete frames caused by as-recorded single and consecutive earthquakes. To do so, two sets of strong ground motions are selected based on maximum and approximately maximum peak ground acceleration (PGA) from "PEER" and "USGS" centers. Consecutive earthquakes in the first and second groups, not only occurred in similar directions and same stations, but also their real time gaps between successive shocks are less than 10 minutes and 10 days, respectively. In the following, a suite of six concrete moment resisting frames, including 3, 5, 7, 10, 12 and 15 stories, are designed in OpenSees software and analyzed for more than 850 times under two groups of as-recorded strong ground motion records with/without seismic sequences phenomena. The idealized multilayer artificial neural networks, with the least value of Mean Square Error (MSE) and maximum value of regression (R) between outputs and targets were then employed to generate the empirical charts and several correction equations for design utilization. To investigate the effectiveness of the proposed damage index, calibration of the new approach to existing real data (the result of Park-Ang damage index 1985), were conducted. The obtained results show good precision of the developed ANNs-based model in predicting the maximum damage of regular reinforced concrete frames.

Safety assessment of dual shear wall-frame structures subject to Mainshock-Aftershock sequence in terms of fragility and vulnerability curves

  • Naderpour, Hosein;Vakili, Khadijeh
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.425-436
    • /
    • 2019
  • Successive ground motions having short time intervals have occurred in many earthquakes so far. It is necessary to investigate the effects of this phenomenon on different types of structures and to take these effects into consideration while designing or retrofitting structures. The effects of seismic sequences on the structures with combined reinforced concrete shear wall and moment resisting frame system have not been investigated in details yet. This paper has tried to analyse the seismic performance of structures with such structural systems subjected to mainshock-aftershock sequences. The effects of the seismic sequences on the investigated models are evaluated by strong measures such as IDA capacity and fragility and vulnerability curves. The results of this study show that the seismic sequences have a significant effect on the investigated models, which necessitates considering this effect on designing, retrofitting, decision making, and taking precautions.

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.