• Title/Summary/Keyword: Succesive application

Search Result 2, Processing Time 0.02 seconds

Effects of the Succesive Application of Organic Matters on Soil Properties and Rice Yiels (유기물 장기연용이 토양의 이화학적 성질과 벼수량에 미치는 영향)

  • Jeong, Ji-Ho;Sin, Bok-Woo;Yoo, Chul-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.129-133
    • /
    • 2001
  • This studies was carried out to investigate the effects of long term application of organic matters for 21 years from 1979 to 1999. The organic matters were applicated 5 ton $ha^{-1}$ as rice straw and 10 ton $ha^{-1}$ as compost. The used soil was paddy soil of Junbuk series. The obtained results are as follows: For 21 years, the changes of organic matter content of sail was from 22g $kg^{-1}$ to 21g $kg^{-1}$ in the plot of no organic application, but from 25g $kg^{-1}$ to 29gkg^(-1) in the plot of organic matter application. The changes of cation excange capacity of soil were lower gradually in the plot of non-appilcation of organic matter, but were not changed in the plots of rice straw and compost appilcation. The changes of rice yield were highly decreased after 10 years in the plot of no organic matter application, but rice yield were not highly changed in the plot of organic matter application. As conclusion, sussesive application of organic matters is improving physico-chemical properties of soil and is increasing rice yield.

  • PDF

An Adaptive Finite Element Method for Semiconductor Device Analysis (반도체 소자 해석을 위한 적응 유한요소법)

  • 최경;경종민;한민구;함송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.205-213
    • /
    • 1988
  • It has been very difficult to solve the semiconductor problems by numerical analysis techique due to the strong nonlinearity of the governing equations. Thus, we proposed a double structured adaptive refinement scheme to the finite element analysis of semiconductor devices, which guarantees a succesive convergency and gives better quality to the solutions.i.e., in the first step, the main factor of divergence in the current continuity equation is eliminated and the next, the solution quality is improved by reducing the discontinuity of current. The result of test application to the GaAs MESFET model shows that the proposed method is much dffective and efficient in the numerical analysis of semiconductor.