• Title/Summary/Keyword: Subway tunnel

Search Result 382, Processing Time 0.024 seconds

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

Development of a Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발)

  • 배규진;김창용;신휴성;홍성환
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.67-88
    • /
    • 1999
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring superstructures to deform. An expert system called NESASS was developed to analyze the structural safety of such superstructures. NESASS predicts the trend of ground settlements to be resulted from tunnel excavation and carries out a safety analysis for superstructures on the basis of the predicted ground settlements. Using neural network techniques, NESASS learns a data base consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure and, in turn, determines the safety of the structure. In addition, NESASS predicts the patterns of cracks to be formed on the structure using Dulacskas model for crack evaluation. In this study, the ground settlements measured from the Seoul subway construction sites were collected and sorted with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to verify the reliability of the proposed neural network structure. A comparison of the ground settlement trends predicted by NESASS with the measured ones indicates that NESASS leads to reasonable predictions. An examples is presented in this paper where NESASS is used to evaluate the safety of a structure subject to deformation due to tunnel excavation near to the structure.

  • PDF

Auxiliary Reinforcement Method for the Safety of Tunnelling Face (터널 막장안정성에 따른 보강공법 적용)

  • Kim, Chang-Yong;Park, Chi-Hyun;Bae, Gyu-Jin;Hong, Sung-Wan;Oh, Myung-Ryul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 2000
  • Tunnelling has been created as a great extent in view of less land space available because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities. In tunnelling, it is often faced that measures are obliged to be taken without confirmation for such abnormality as diverged movement of surrounding rock mass, growing crack of shotcrete and yielding of rockbolts. In this case, it is usually said that the judgments of experienced engineers for the selection of measure are importance and allowed us to get over the situations in many construction sites. But decrease of such experienced engineers need us to develop the new system to assist the selection of measures for the abnormality without any experiences of similar tunnelling sites. In this study, After a lot of tunnelling reinforcement methods were surveyed and the detail application were studied, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

A Field Evaluation of Calcium Carbonate Scale Prevention using Molecular Vibration in Subway Tunnels (분자진동을 이용한 스케일 방지 기술의 지하철 터널 내 현장적용성 평가)

  • Park, Eunhyung;Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.27-33
    • /
    • 2012
  • The purpose of this study is to evaluate the field applicability of Quantum Stick in scale deposit prevention for subway tunnels in Seoul. This technology was installed into drainpipes and its performance was monitored through occasional site visits. SEM and EDS were also performed on scale collected from these drain pipes. Results showed a decrease in scale deposits due to Quantum Stick treatment. In the field test, the device was found to be effective in preventing scale formation in new pipes as well as reducing existing scale in previously installed pipes. However, further investigations are necessary to account for various environmental conditions. In conclusion, the results indicate that molecular Vibration technology is effective in suppressing scale formation.

Measurement of compressive and tensile strain in concrete structure with FBG sensor fixture (광섬유격자센서의 콘크리트구조물에의 고정과 압축 및 인장 변형의 측정)

  • Kim, Ki-Soo;Kim, Young-Jin;Moon, Dae-Jung;Kim, Seong-Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well

  • PDF

Groundwater Balance in Urban Area (도시지역의 지하수수지)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1553-1560
    • /
    • 2011
  • The study analyzes groundwater balance with regard to the water recharge and discharge which contain urbanization components in Suyeong-gu, Busan. It also verifies the reliability and accuracy improvement on the analysis of the balance. The result of the study is viewed as preliminary data which are useful to develop, utilize and manage groundwater. The average quantity of groundwater recharge is 6,014.1 $m^3$/day in the research area during the last ten year period(from 1998 to 2007). The outflow from drainage areas to rivers and coasts is 149.3 $m^3$/day, the inflow from rivers and coasts to drainage area is 439.9 $m^3$/day. The use of the water is 4,243.0 $m^3$/day. The outflow caused by subway in line No.2 and No.3 through Suyeong-gu and the one by building an underground electric complex is 1,500.0 $m^3$/day. The leakage of water works is 6514.9 $m^3$/day. The inflow and outflow of sewerage is 5082.2 $m^3$/day from groundwater to sewer. The amount of groundwater recharge, the inflow from rivers and coasts to drainage area, and the leakage of water works belong to the amount of groundwater inflow and the total amount is 12,968.9 $m^3$/day. The amount of outflow from drainage area to rivers and coasts, the use of groundwater, outflow by subway and underground electric complex tunnel and the amount of inflow of the water to sewerage belong to the amount of outflow of groundwater and the sum amount is 13,031.5 $m^3$/day. The gap between the amount of inflow and outflow of groundwater is 62.6 $m^3$/day, which is considered to reflect the trend that the short term drop in the amount of rainfall results in the amount of groundwater recharge and that the amount of outflow from drainage area to rivers and coasts decreases.

Underground Space Development and Strategy in Korea (국내 지하공간 개발 및 대책)

  • Shin, Hee-Soon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.327-336
    • /
    • 2013
  • Approximately 70% of the Korean peninsula is composed of mountains, around 99,274 $km^2$. Even worse, population rate of Korea is the No.3 in the world now. Accordingly, it is necessary to develop the potential underground space actively with the concept of another territory to be utilized. The development of underground space should be considered not a choice but an indispensable issue. Since 1970s, many large-scale underground structures have been constructed like as crude-oil storage bins, liquefied petroleum gas storage caverns, and underground pumped storage powerplants. Also, In urban area, the underground facilities such as subway networks, underground shopping mall, underground pedestrian network, electric power tunnels, and car parking lots have been used extensively. The scale of Yeosu oil and gas underground storage facility and Seoul subway systems are one of the massive scale in the world. Recently, the trend of the development of underground space becomes more diverse and larger scale. The current status of Korean underground space developments and strategy are described in this paper.

Seismic Retrofit Effect for Column of Subway Tunnel Reinforced by FRP-Ductile Material Layered Composites (FRP-연성재 적층복합체로 보강된 도시철도 개착식 터널 기둥의 내진보강효과)

  • Kim, Doo-Kie;Go, Sung-Hyuk;Kim, Jin-Yeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.85-92
    • /
    • 2010
  • Recently the earthquake occurrences in Korea are likely to increase. Therefore, the facilities such as bridges and tunnels under the unexpected earthquakes need to be enhanced. Especially most of the subways previously built before 1988 have not been seismically designed, so their seismic safety requirements are required to be inspected and/or reinforced. In this study, the seismic reinforcement using FRP-ductile material layered composites was proposed to reinforce for the subway columns. Material properties of FRP-ductile material layered composites were calculated by laboratory tests considering the laminated conditions of the composites. Numerical simulations were performed using the experimental results of the specimens and the calculated properties of the composites. Seismic performance varied according to the types of composites: ductile material, number of layers, fiber orientations.

A Case Study on Reinforcement Method by Excavation Adjacent to the Subway Tunnel using Numerical Analysis (수치해석을 통한 지하철 구조물 인접 굴착에 따른 보강공법 적용사례연구)

  • Byun, Yo-Seph;Jung, Kyoung-Sik;Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.5-11
    • /
    • 2011
  • Recently, large and deep excavations are increasing. The damage of adjacent structures due to excavation has steadily increased with increasing construction demand. Especially in urban development and poor conditions, the excavation adjacent to the subway structures has caused a lot of problems. This paper was reviewed that the underground excavation and reinforcement of the status process through a case study on the field. And stability analysis through the case study evaluates applicability for reasonable reinforcement method by numerical analysis. As a result, the strata distribution condition of all 16 sites consisted of landfill from the top and distributed in the order of deposits, weathered soils, weak rock from the bottom. Also, when proceeding the excavation adjacent to structures, the location of site and layer conditions have highly effect on the results of the construction. Therefore, this study was applied reinforcement method to protect damage by excavation. Displacement and settlement were within allowable criterion and hence, stability of structure was analyzed as safe.