• Title/Summary/Keyword: Subway Station Platforms

Search Result 40, Processing Time 0.029 seconds

A NUMERICAL ANALYSIS OF TRAIN-WIND IN THE SUBWAY TUNNEL FOR THE IMPROVEMENT OF THE OF UNDERGROUND SPACE AIR QUALITY (지하공간의 공기 질 개선을 위한 지하철 터널 내 열차풍의 수치 해석적 연구)

  • Lee, J.H.;Juraeva, M.;Jeong, S.H.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.523-528
    • /
    • 2011
  • Subway becomes more and more main transportation in major cities. Air pollution in the subway platforms is decreased; however, dust flow inside subway tunnel and train is increased by installing Platform Screen Door. Airflow inside subway tunnel is observed using computational method in this study The airflow characteristics around ventilation shafts and inside the tunnel is studied following the train movement, while the train moves from existing Miasamgeori station to Gireum station ANSYS CFX V12.0.l and ICEM CFD V12.0.l are used to compute the airflow inside the subway tunnel.

  • PDF

Analysis of User Satisfaction by Types of Subway Platforms and Transit Stations (지하철 승강장 및 환승정거장 유형에 따른 이용자 만족도 분석)

  • Kim, Hwang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.437-445
    • /
    • 2015
  • The layout of facilities, in relation to information and navigational displays, has great influence on subway satisfaction, and tend to vary depending on the types of subway platform and transit station. However, until now, few studies have covered such aspects as of yet. Starting from this viewpoint, the purpose of this study was to use an IPA analysis technique to analyze that satisfaction on the importance of facilities to aid in accessibility, such as elevators and escalators, transit amenities and information and navigational displays depending on the types of platform and transit station. To do so, we've classified 15 metropolitan stations according to types of platform and transit station and analyzed differences in user importance and satisfaction as well as improvements for platforms and transit stations of similar type. By the analysis results of this study, we've concluded that the proper selection and positioning of elevator and escalator facilities and information and navigational displays was important when designing the subway station according to platform type (separate platform) and or according to the transit station type (cross, L, T types) where pedestrian flow heavily intersected. We considered that such analysis results would be helpful in the design of new stations and the enhancement of existing stations pursuant to a new direction that minimizes user inconvenience, and that improvement items should be developed first according to the platform and transit station types, which would be helpful in enhancing the efficiency of the subway improvement cost.

Analysis of air pollution in subway area of Busan Metropolitan City (부산광역시 지하철역 지하공간의 대기오염 특성)

  • Lee, Hwa-Woon;Jang, Nan-Sim;Kwak, Jin;Lee, Hee-Ryung;Kim, Hee-Man
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2002
  • The purpose of this study is designed to estimate the air quality of subway stations that have the underground platforms in Pusan Metropolitan City, from September to November 2000, over seven times. The subjects include Yonsan-dong station, Somyon station, Pusan station, Nampo-dong station, and Tushil station. The samplings were conducted at three points of each station, i.e. gate, ticket gates, and platforms. The major materials for analysis were CO, NO, NO$_2$, and $O_3$. The experiment was conducted at 7:00 pm with KIMOTO HS-seven Handy sampler and Tedlar Bag of SKC INC(U.S.A). In order to more fully understand station environments, we also measured temperature at each point. The results showed that $O_3$ average concentration at Yonsan-dong station was higher than others with 38~51 ppb. The average concentration of NO was high at ticket gate and platform at Somyon station(119 ppb, 122 ppb), Nampo-dong station(102 ppb, 100 ppb). These results show that the air pollution of stations with underground shopping malls was higher than others. At Somyon station having a junction station, NO and NO$_2$ concentration level of platform-2(noncrowded) was higher than platform-1(crowded). This is most likely due to the accumulation of air pollutants and inadequate ventilation systems.

The example of the Carbon Grounding Modules installation for PSD systems at a subway station, Seoulmetro (서울메트로 PSD장비 탄소접지모듈 설치 사례)

  • Chung, Young-Ki;Hyeon, Yong-Seop;Song, Byeong-Gwon;Kim, Yong-Hyeop
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.292-298
    • /
    • 2008
  • Seoul Metro and Seoul Metropolitan Rapid Transit Corp. have started installing screen doors at subway platforms to improve the environment of subways and prevent passengers' accidents since 2006. They are still installing screen doors at subway platforms and Metropolitan Rapid Transit Corporations in other areas are also proceeding with installment of screen doors or making preparations for it. Grounding is necessary for installing PSD systems. In case that PSD grounding is connected with existing electrical equipment grounding system, it was decided to install separate grounding for safe operation of PSD system and passenger safety. However, it's very difficult to install new grounding at the subway station compound. A way to improve this condition is that we proceed with grounding by composing grounding station by carbon grounding rod. This paper will mainly deal with how to design and construct carbon ground rod, which has been applied to PSD system grounding since 2006, including its experimental examples. In this paper, ways to secure ground resistance below 5 ohms, which is resistance necessary for PSD grounding, and to compose grounding system were also discussed. Furthermore, a ground test to check the ability to fulfill a role of PSD grounding system was conducted. As a result of applying carbon grounding module, PSD system is being operated without any problem and the installment of PSD system will be continuously expanded in the future. It's also thought that a way to integrate grounding of each functional room which has been installed at the subway station compound and to arrange equipotential grounding should be reviewed and performed promptly.

  • PDF

Train Wind Analysis of Subway Platforms (지하철 승강장 열차풍 특성 분석)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun;Kim, Shin-Do;Lee, Kyoung-Bin;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.100-106
    • /
    • 2011
  • PSD(platform screen door) was completely installed at all of Seoul subway station(line 1~8) using 640million people per day by 2010. After installation of PSD, the influence of train induced wind at platform decreased, but is estimated to increase in subway tunnel. In this paper, train induced wind occurred by pass of subway at platform was measured and analyzed using numerical analysis by computational fluid dynamics.

  • PDF

THE PRESSURE-TRANSIENT ANALYSIS ON THE PLATFORM SCREEN DOORS OF THE SIDE PLATFORMS IN A SUBWAY STATION WITH VARIOUS OPERATING CONDITIONS (열차 운행에 따른 상대식 승강장에서 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Ahn, Hyuk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.283-289
    • /
    • 2008
  • The pressure-transient on platform screen doors in side platforms caused by passing trains with various operating conditions have been investigated numerically. The transient compressible three-dimensional flow simulations are performed with actual operating conditions of two trains by adopting moving mesh technique. To achieve more realistic results, the detailed shape of train and the subway station including tunnels connecting the adjacent stations are represented in the computational domain. Numerical analyses are carried out for cases considering arriving/passing/departing train with or without train stopped on the opposite track, and both trains on the move in opposite direction. From the numerical results, the maximum pressure on the platform screen doors, which is predicted in the case of two passing trains, satisfied the design standards for similar stations.

  • PDF

THE PRESSURE-TRANSIENT ANALYSIS ON THE PLATFORM SCREEN DOORS OF THE SIDE PLATFORMS IN A SUBWAY STATION WITH VARIOUS OPERATING CONDITIONS (열차 운행에 따른 상대식 승강장에서 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Ahn, Hyuk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.283-289
    • /
    • 2008
  • The pressure-transient on platform screen doors in side platforms caused by passing trains with various operating conditions have been investigated numerically. The transient compressible three-dimensional flow simulations are performed with actual operating conditions of two trains by adopting moving mesh technique. To achieve more realistic results, the detailed shape of train and the subway station including tunnels connecting the adjacent stations are represented in the computational domain. Numerical analyses are carried out for cases considering arriving/passing/departing train with or without train stopped on the opposite track, and both trains on the move in opposite direction. From the numerical results, the maximum pressure on the platform screen doors, which is predicted in the case of two passing trains, satisfied the design standards for similar stations.

  • PDF

A Model for Analyzing Time-Varying Passengers' Crowdedness Degree of Subway Platforms Using Smart Card Data (스마트카드자료를 활용한 지하철 승강장 동적 혼잡도 분석모형)

  • Shin, Seongil;Lee, Sangjun;Lee, Changhun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.49-63
    • /
    • 2019
  • Crowdedness management at subway platforms is essential to improve services, including the prevention of train delays and ensuring passenger safety. Establishing effective crowdedness mitigation measures for platforms requires accurate estimation of the congestion level. There are temporal and spatial constraints since crowdedness on subway platforms is assessed at certain locations every 1-2 years by hand counting. However, smart cards generate real-time big data 24 hours a day and could be used in estimating congestion. This study proposes a model based on data from transit cards to estimate crowdedness dynamically. Crowdedness was defined as demand, which can be translated into passengers dynamically moving along a subway network. The trajectory of an individual passenger can be identified through this model. Passenger flow that concentrates or disperses at a platform is also calculated every minute. Lastly, the platform congestion level is estimated based on effective waiting areas for each platform structure.

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STATION CAUSED BY PASSING TRAINS (상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is used with actual operational condition of subway train by adopting the moving mesh technique considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel connecting the stations are included in a computational domain with modeling the detailed shape of the train. Numerical analyses are conducted on five operational conditions which include the variation of the train speed, case with or without the train stopped in the other track, and case for two trains passing each other inside the station. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation for the cases considered in the present study is found to be satisfactory to various foreign standards.

Analysis of Ambient Air Quality Level in Subway Area in Busan Metropolitan City (부산광역시 지하철 내의 대기오염도 분석)

  • Lee, Hwa-Woon;Park, Jong-Kil;Jang, Nan-Sim;Lee, Hee-Ryung;Kim, Hee Man
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.207-215
    • /
    • 2003
  • The purpose of this study is to estimate the air quality of subway stations having underground platforms in Busan Metropolitan City, from September to November 2000, over seven times. The places of the investigation include Yonsan-dong station, Somyon station, Busan station, Nampo-dong station, and Dusil station. Samplings were conducted at three points in each station, i.e. gates, ticket gates, and platforms. CO, NO, $NO_2$, and $O_3$ were the main components of air for this analysis. In order to more fully understand station environments, we also measured an air temperature at each point. The results showed that the $O_3$ average concentration of Yonsan-dong station was higher than others with 38~51 ppb. The average concentration of NO was high at the ticket gate and platform at Somyon station (119 ppb, 122 ppb) and Nampo-dong station (102 ppb, 100 ppb). These results show that the air pollution of stations with underground shopping malls were higher than others. At Somyon station having a junction station, NO and $NO_2$ concentration levels of platform-2 (noncrowded) were higher than platform-1 (crowded). This is most likely due to the accumulation of air pollutants and inadequate ventilation systems. To find the relationship of the indoor (platform) and outdoor (gate), we analyzed the I/O ratio. The averages of CO and $O_3$ were both higher than one: 1.16 and 1.82, respectively. In the correlations between each material and the others, NO vs $NO_2$ was the highest with R=0.63. In the correlations between indoor and outdoor, $O_3$ was the highest with R=0.64.