• Title/Summary/Keyword: Subtraction image

Search Result 279, Processing Time 0.027 seconds

Quantification of Cerebral Perfusion Reserves using Deadtime Correction of Gamma Camera and Norma1ized Difference Ratio Image in Brain SPECT (뇌혈류 SPECT에서 감마카메라 불응시간보정과 정규화 감산영상을 이용한 뇌혈류 비축능의 정량화)

  • 이재성;곽철은
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.443-448
    • /
    • 1996
  • Sequential brain SPECT imaging has been used to assess the cerebral perfusion reserve(CPR) in cerebrovascular diseases(UD). We have realized parametric images of CPR using deadtime correction of gamma camera and normalized difference ratio. For the anatomical localization of CPR, the parametric images were registered to the contours of the cerebral regions using optimal threshold method, which showed to reflect the CPR more reliably and distinctively than the simple subtraction. We conclude that the quantitative estimation of CPR using normalized difference ratio image could be useflll for the diagnosis and prognostic assessment of CVD.

  • PDF

3D Walking Human Detection and Tracking based on the IMPRESARIO Framework

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. To achieve this goal, we propose a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers have been also presented. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

Color Space Based Objects Detection System from Video Sequences

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.347-350
    • /
    • 2011
  • This paper propose a statistical color model of background extraction base on Hue-Saturation-Value(HSV) color space, instead of the traditional RGB space, and shows that it provides a better use of the color information. HSV color space corresponds closely to the human perception of color and it has revealed more accuracy to distinguish shadows [3] [4]. The key feature of this segmentation method is based on processing hue component of color in HSV color space on image area. The HSV color model is used, its color components are efficiently analyzed and treated separately so that the proposed algorithm can adapt to different environmental illumination condition and shadows. Polar and linear statistical operations are used to calculate the background from the video frames. The experimental results show that the proposed background subtraction method can automatically segment video objects robustly and accurately in various illuminating and shadow environments.

The Application of Unmanned Aerial Photograpy for Effective Monitoring of Marine Debris (해안표착물의 효율적인 모니터링을 위한 무선 조정 항공기 촬영기법의 적용)

  • Jang, Seon-Woong;Lee, Seong-Kyu;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2011
  • This study proposed detection method of Marine debris using unmanned aerial photography. For unmanned aerial photography, a RC(Radio Control) helicopter which has good movability and economics was used. To a camera mounting, a gimbal equipment was attached to the bottom of the RC helicopter. The gimbal equipment is very useful because it is not seriously affected by vibration and rolling. In addition, we invented that digital image processing algorithm using Matlab program for detection of marine debris from photographs. Particularly, background subtraction in invented algorithm was applied. As a result, marine debris of a variety of forms from different sand states of coast were reliably detected. In the future, monitoring using proposed method was expected to contribute that the solution to representative problem of monitoring area selecting and estimate the total litter mass over the beach. Moreover, It is considered a greater application possibility to marine environmental observations.

Automatic Lower Extremity Vessel Extraction based on Bone Elimination Technique in CT Angiography Images (CT 혈관 조영 영상에서 뼈 소거법 기반의 하지 혈관 자동 추출)

  • Kim, Soo-Kyung;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.967-976
    • /
    • 2009
  • In this paper, we propose an automatic lower extremity vessel extraction based on rigid registration and bone elimination techniques in CT and CT angiography images. First, automatic partitioning of the lower extremity based on the anatomy is proposed to consider the local movement of the bone. Second, rigid registration based on distance map is performed to estimate the movement of the bone between CT and CT angiography images. Third, bone elimination and vessel masking techniques are proposed to remove bones in CT angiography image and to prevent the vessel near to bone from eroding. Fourth, post-processing based on vessel tracking is proposed to reduce the effect of misalignment and noises like a cartilage. For the evaluation of our method, we performed the visual inspection, accuracy measures and processing time. For visual inspection, the results of applying general subtraction, registered subtraction and proposed method are compared using volume rendering and maximum intensity projection. For accuracy evaluation, intensity distributions of CT angiography image, subtraction based method and proposed method are analyzed. Experimental result shows that bones are accurately eliminated and vessels are robustly extracted without the loss of other structure. The total processing time of thirteen patient datasets was 40 seconds on average.

The quantitative analysis by digital subtraction radiography on the effect of Enamel Matrix Protein and Platelet-Rich Plasma, combined with Xenograft in the treatment of intrabony defect in humans (골 내 결손 치료 시 법랑 기질 단백질과 이종골 이식 및 혈소판 농축 혈장의 골 재생 효과에 대한 디지털 공제술의 정량적 분석)

  • Han, Keum-Ah;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.961-974
    • /
    • 2005
  • Various biological approaches to the promotion of periodontal regeneration have been used. These can be divided into the use of growth and differentiation factors, application of extracellular matrix proteins and attachment factors and use of mediators of bone metabolism. The purpose of this study was to evaluate the effect of enamel matrix protein and platelet-rich plasma on the treatment of intrabony defect, with bovine-derived bone powder in humans by digital subtraction radiography. 12 teeth(experimental I group) were treated with enamel matrix protein combined with bovine-derived bone powder and 12 teeth(experimental II group) were treated with platelet-rich plasma combined with bovine-derived bone powder. The change of bone density was assessed by digital subtraction radiography in this study. The change of mineral content was assessed in the method that two radiography were put into computer program to be overlapped and the previous image was subtracted by the later one. Both groups were statistically analyzed by Wilcoxon signed Ranks Test and Mann-whitney Test using SPSS program for windows(5% significance level). The results were as follows: 1. The radiolucency in 3 months after surgery was significantly increased than 1 month after surgery in both groups(experimental I and II groups)(p<0.05). 2. The radiopacity in 6 months after surgery was significantly increased than 3 months after surgery in both groups(experimental I and II groups) (p<0.05). 3. In experimental I group, there was no significant difference between 1 month and 6 months after surgery. 4. In experimental II group. the radiopacity in 6 months after surgery was significantly increased than 1 month after surgery(p<0.05). 5. There was no significant difference between experimental I and II group at 1 month and 3 months after surgery, but the radiopacity in experimental II group was significantly increased at 6 months after surgery(p<0.05). In conclusion, platelet-rich plasma can enhance bone density than enamel matrix protein until 6 months after surgery.

Efficient Object Selection Algorithm by Detection of Human Activity (행동 탐지 기반의 효율적인 객체 선택 알고리듬)

  • Park, Wang-Bae;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents an efficient object selection algorithm by analyzing and detecting of human activity. Generally, when people point any something, they will put a face on the target direction. Therefore, the direction of the face and fingers and was ordered to be connected to a straight line. At first, in order to detect the moving objects from the input frames, we extract the interesting objects in real time using background subtraction. And the judgment of movement is determined by Principal Component Analysis and a designated time period. When user is motionless, we estimate the user's indication by estimation in relation to vector from the head to the hand. Through experiments using the multiple views, we confirm that the proposed algorithm can estimate the movement and indication of user more efficiently.

The Utility Evaluation of Reconstructed 3-D Images by Maximum Intensity Projection in Magnetic Resonance Mammography and Cholangiopancreatography

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-Soo;Kim, Ham-Gyum;Baek, Jong-Geun;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • The aim of this study was to evaluate the utility of 3-D images by comparing and analyzing reconstructed 3-D images from fast spin echo images of MRI cholangiopancreatography (MRCP) images using maximum intensity projection (MIP) with the subtraction images derived from dynamic tests of magnetic resonance mammography. The study targeted 20 patients histologically diagnosed with pancreaticobiliary duct disease and 20 patients showing pancreaticobiliary duct diseases, where dynamic breast MR (magnetic resonance) images, fast spin echo imaged of pancreaticobiliary duct, and 3-D reconstitution images using a 1.5T MR scanner and 3.0T MR scanner were taken. As a result of the study, the signal-to-noise ratio in the subtracted breast image before and after administering the contrast agent and in the reconstructed 3-D breast image showed a high ratio in the reconstructed image of lesional tissue, relevant tissue, and fat tissue. However, no statistically meaningful differences were found in the contrast-to-noise ratio of the two images. In the case of the MRCP image, no differences were found in the ratios of the fast spin echo image and reconstructed 3-D image.

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

A Framework for Human Body Parts Detection in RGB-D Image (RGB-D 이미지에서 인체 영역 검출을 위한 프레임워크)

  • Hong, Sungjin;Kim, Myounggyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1927-1935
    • /
    • 2016
  • This paper propose a framework for human body parts in RGB-D image. We conduct tasks of obtaining person area, finding candidate areas and local detection in order to detect hand, foot and head which have features of long accumulative geodesic distance. A person area is obtained with background subtraction and noise removal by using depth image which is robust to illumination change. Finding candidate areas performs construction of graph model which allows us to measure accumulative geodesic distance for the candidates. Instead of raw depth map, our approach constructs graph model with segmented regions by quadtree structure to improve searching time for the candidates. Local detection uses HOG based SVM for each parts, and head is detected for the first time. To minimize false detections for hand and foot parts, the candidates are classified with upper or lower body using the head position and properties of geodesic distance. Then, detect hand and foot with the local detectors. We evaluate our algorithm with datasets collected Kinect v2 sensor, and our approach shows good performance for head, hand and foot detection.