• Title/Summary/Keyword: Subsurface wetland

Search Result 33, Processing Time 0.019 seconds

The Effect of Reclaimed Sewage Irrigation on the Rice Cultivation (벼 재배시 생활오수 처리수 관개 효과)

  • Yoon, Chun-Gyeong;Kwun, Soon-Kuk;Chung, Ill-Min;Kwon, Tae-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.236-244
    • /
    • 1999
  • A feasibility study was performed to examine the agronomic application of treated sewage on paddy rice culture by field experiment. The domestic sewage was treated by the constructed wetland system which was in subsurface flow type and consisted of sand and macrophyte. The effluent of the wetland system was adjusted to maintain the total nitrogen concentration below $25mgL^{-1}$ and used for irrigation water. Four treatments include (1) irrigation of treated sewage after concentration adjusted with conventional fertilization (TWCF), (2) irrigation of treated sewage after concentration adjusted with half of the conventional fertilization (TWHF), (3) irrigation of treated sewage after concentration adjusted without fertilization (TWNF), and (4) irrigation of treated sewage as it was without fertilization (SWNF). These cases were compared to the control case of tap water irrigation with conventional fertilization (Control). Generally, addition of the treated sewage to the irrigation water showed no adverse affect on paddy rice culture, and even improvement was noticed in both growth and yields. TWCF showed the best result and the yields exceed the Control in about 10%. Overall performance of the treatments was TWCF, Control, TWHF, TWNF, and SWNF in decreasing order. From this study, it appears that reuse of treated sewage as a supplemental irrigation water could be feasible and practical alternative for ultimate sewage disposal which often causes water quality problem to the receiving water body. For full scale application, further study is recommended on the specific guidelines of major water quality components and public health.

  • PDF

Fragipan Formation within Closed Depressions in Southern Wisconsin, United States (미국 위스콘신 남부지방의 소규모 저습지에 나타나는 이쇄반층(Fragipan)의 형성과정에 관한 연구)

  • Park S.J.;Almond P.;McSweeney K.;Lowery B.
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.150-167
    • /
    • 2006
  • This study was conducted to determine the pedogenesis of dense subsurface horizons (denoted either Bx or Bd) observed within closed depressions and in toeslope positions at loess-covered glacial tillplains in southern Wisconsin. Some of these dense subsurface horizons, especially those occurring within depressions, show a close morphological resemblance to fragipans elsewhere, even though the existence of fragipans has not been previously reported in southern Wisconsin. The spatial occurrence of fragipans was first examined over the landscape to characterize general soil-landscape relationships. Detailed physico-chemical and micromorphological analyses were followed to investigate the development of fragipans within a closed depression along a catenary sequence. The formation of fragipans at the study site is a result of sequential processes of physical ripening and accumulation of colloidal materials. A very coarse prismatic structure with a closely packed soil matrix was formed via physical ripening processes of loess deposited in small glacial lakes and floodplains that existed soon after the retreat of the last glacier. The physically formed dense horizons became hardened by the accumulation of colloidal materials, notably amorphous Si. The accumulation intensity of amorphous Si varies with mass balance relationships, which are governed by topography and local drainage conditions. Well-developed Bx horizons evolve at closed depressions where net accumulation of amorphous Si occurs, but the collapsed layers remain as Bd horizons at other locations where soluble Si has continuously been removed downslope or downvalley. Hydromorphic processes caused by the presence of fragipans are degrading upper parts of the prisms, resulting in the formation of an eluvial fragic horizon (Ex).

Effect of Timing and Placement of N Fertilizer Application for Increased Use Efficiency - Principle and Practice (열대지역(熱帶地域)에 있어서 질소비료(窒素肥料)의 시용시기(施用時期)와 시비위치(施肥位置)가 비료효율(肥料效率)에 미치는 영향(影響) - 원리(原理)와 실제(實際))

  • Hong, Chong-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.285-299
    • /
    • 1987
  • Timing and placement of fertilizer applications are two managerial means to improve the fertilizer use efficiency. The relative importance of these two means is determined by the application rate. With the realistic rate of N application recommended to the small farmers in the tropics, at present and in the near future, basal application in right manner, seems to be more important than split application at different times. In wetland rice soils, deep placement by whatever available means is desirable. But in the situations where perfect deep placement is very difficult to implement, the whole-layer application may be worth trying, until better methods become available. In rainfed uplands, N fertilizer application plans should be contingent upon the amount and distribution of rainfall: apply a less risky rate as subsurface banding near the crop rows to start with; then, depending upon the rainfall prospects in the season, apply or omit the additional dose. Because the patterns of crop response to N fertilizer can be significantly different between the research farms and farmers' fields, it seems imperative to have information on the patterns of crop response to N under farmers' management conditions, for the development of realistic fertilizer application recommendations. To enable the farmers to adopt improved fertilizer application technologies, it is essential to develop and make available to farmers convenient fertilizer applicators. Past experience with the improved fertilizer use technologies indicates that, in the long run, the development of fertilizers that are not only effective and convenient for farmers to use but also easy to produce without major modifications of existing fertilizer production systems is the ultimate solution to the problem of low N fertilizer use efficiency.

  • PDF