• Title/Summary/Keyword: Subsurface runoff

Search Result 70, Processing Time 0.029 seconds

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

Runoff of Trifluralin from Fields in Louisiana (Louisiana의 농장에서 Trifluralin의 유출)

  • ;S.E. Feagley
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.585-592
    • /
    • 1996
  • Trifluralin (2, 6-dinitro-N, N-dipropyl-4- (trifluormethyl) benzenamine) was applied preemergent to soybean in plots drained or nondrained, in louisiana. Plots 14.6 ha were arranged to give 1683 g/ha of trifluralin. The half life of trifluralin in the top 15 cm of soil was 42.6 darts and f6.0 days in nondrained plot and drained plot, respectively. The concentrations of trifluralin in surface runoff water and subsurface runoff water were 0.62 ng/ml-0.02 ng/ml and 11.06 ng/ml-0.02 ng/ml, respectively. The concentration of trifluralin in runoff water was smaller than 2 ng/ml for trifluralin of U.S. Environmental Protection Agency advisory. Total loss of trifluralin in runoff water was 0.021 % of applied amount at drained plots during three month after application. Trifluralin was moved hardly in the water. Subsurface drainage -reduced trifluralin losses because concentration of trifluralin in the subsurface runoff water in drained fields was low.

  • PDF

Effects of Rain Garden on Reduction of Subsurface Runoff and Peak Flow (레인가든이 지하유출 및 첨두유량 감소에 미치는 효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.69-79
    • /
    • 2011
  • This study assessed the subsurface runoff and peak flow reduction in rain gardens. The results showed that the highest water retention was found in rain garden mesocosms in which Rhododendron lateritium and Zoysia japonica were planted, followed by mesocosms in which either R. lateritium or Z. japonica was planted, and the lowest water retention rate was found in non-vegetated control treatment mesocosms(${\alpha}$ < 0.05). Although higher rainfall intensity caused a decrease of peak flow reduction in both vegetated and non-vegetated treatments, peak flow reduction was the greatest in mesocosms with mixed plants. A rain garden can be an effective tool for environment-friendly stormwater management and improving ecological functions in urban areas. Depending on the purpose such as delaying runoff or increasing infiltration, various plant types should be considered for rain garden designing.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.

Effect of Drainage System on ET and Drainage Flows

  • ;Ph.D.,P.E.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.12-19
    • /
    • 1992
  • The effects of drainage system on evapotranspiration and drainage flows are studied. Data from drainage field experiment at Castalia in North Central Branch, Ohio Agricultural Research and Development Center were used in this study. A water table management model, ADATP (Agricultural Drainage and Pesticide Transport), which was developed by combining the GLEAMS and the subsurface drainage part of the DRAINMOD model with several modifications, was evaluated and used to predict hydrologic components. The ET is very much affected by the presence of tile drainage system but not significantly affected by the surface drainage system. The combined surface and subsurface drainage system gives the largest total outflow values while the surface drainage only system gives the smallest. Comparisons of model predicted and measured values of surface runoff only, subsurface drainage only, and combined surface runoff and subsurface drainage system are in satisfactory agreement. The model predicted values are within the range of the variations of the observed replications in general. Based on the results of the model evaluation study, it is concluded that ADAPT model can be used to design water table management systems.

  • PDF

RUNOFF ANALYSIS BY DEAD ZONE LONGITUDINAL DISPERSION ANALOGY (사대종확산 모형에 의한 유출해석)

  • 윤용남;차영기
    • Water for future
    • /
    • v.12 no.1
    • /
    • pp.56-59
    • /
    • 1979
  • A prompt subsurface runoff producing mechanism whih creaters a depletion curve of direct runoff hydrograph is simulated by a dead zone dispersion model technique. Runoff processes are carried out by routing of the outflow resulted from previous linear channel and effective rainfall from its corresponding subwatershed through a series of conceptual linear channels representing subwatersheds of a catchment. Working rules are explained for evaluation the model parameters such as translatory velocity, diffusive factor, and parameters concerning the infiltration and relative magnitude of the prompt subsurface flow region.

  • PDF

APPLICATION OF GRID-BASED KINEMATIC WAVE STORM RUNOFF MODEL(KIMSTORM)

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Sok
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.321-330
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

A study on the flood runoff analysis with TANK MODEL (탱크 모델에 의한 홍수(洪水) 유출량(流出量) 해석(解析)에 관(關)한 연구(硏究))

  • Hong, Chang-sun;Choi, Han-kuy
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.95-101
    • /
    • 1983
  • This study aims at the determination of the coefficienties of runoff and infiltration affecting runoff. The rating curve is more available than the peak flood runoff to determine flood control plan of flood control reservoir and the volume of hydroelectric power plant, or to make multipurpose dam. In hydrologic analysis and design, it is necessary to develop relations between precipitation and runoff, possible using some of the factors affecting runoff as parameters. In order to calculate the runoff discharge, the runoff process constituting elements are divided to the surface runoff, the subsurface runoff and the groundwater runoff. By comparing the computed hydrograph with the measured hydrograph, determinned the watershed TANK Model constant Varying the tank model constant for approximating the computed hydrograph to the measured hydrograph.

  • PDF

Analysis of Hydrological Factor for Permeable Pavement by using Soil Tank Experiment (토조실험에 의한 투수성 포장재의 수문학적 요소 분석)

  • Jun, Sang-Mi;Lee, Jung-Min;Park, Jae-Hyeoun;Lee, Sang-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.181-192
    • /
    • 2009
  • In this study, the hydrological properties of permeable pavement were analyzed by the experiment and the numerical simulation. The numerical model used was a modified SWMM especially for considering the hydrological response of permeable pavement. The parameters of modified SWMM were revised by the experimental results, and then the practicability was evaluated through the comparison of the experimental and numerical simulation results. In the experiments, three different rainfall intensities such as 65 mm/hr, 90 mm/hr, 95 mm/hr were supplied for 4 hrs, and the hydraulic properties including surface outflow, subsurface outflow, ground water level, soil water contents were measured for 10 hrs. The results showed rainfall intensity effected directly on surface outflow volume and subsurface outflow volume was more effected by ground water level than rainfall intensity. The ground water level and the soil water contents were under estimated as compared with the experimental data except the portion of occurring direct runoff. The surface and subsurface outflow discharge were simulated very well in comparison with the experimental data. Consequently, the modified SWMM could be used very effectively to evaluate the hydrological property of permeable pavement.

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF