• 제목/요약/키워드: Subsurface Stress

검색결과 118건 처리시간 0.024초

The Stress Field in a Body Caused by the Tangential Force of a Rectangular Patch on a Semi-Infinite Solid

  • Cho, Yong-Joo;Kim, Tae-Wan;Lee, Mun-Ju
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.29-34
    • /
    • 2001
  • The stress field in a body caused by the tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using a potential function. The validity of the results of this study was preyed by Saint-Venant's principle in the remote region and by the superposition of point loads in the vicinity of the surface.

  • PDF

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Weiss형 등속조인트 볼 홈의 접촉응력평가 (Contact Stress Evaluations for the Ball Groove of Weiss Type Constant velocity joint)

  • 김완두;이순복
    • Tribology and Lubricants
    • /
    • 제5권2호
    • /
    • pp.60-67
    • /
    • 1989
  • For the life prediction and fatigue failure prevention of the constant velocity joint, the maximum equivalent stress and its location in depth from the contact area are essential. These values give the fundamental information to determine the depth of the surface hardening treatment at the contact area. Contact stresses are evaluated at the surface and subsurface of the ball groove of the Weiss type constant velocity joint. The maximum contact pressure and the maximum equivalent stress are obtained. The effects of various parameters such as the radius of ball groove, friction coefficient, and residual stress are studied. The maximum equivalent stress and the maximum contact pressure increase as the radius of the ball grove increases. The location of the maximum equivalent stress moves toward surface as the friction coefficient increases. It was also found that the maximum equivalent stress becomes minimum when the compressire residual stress is about 0.16 times of the maximum contact pressure.

Estimations of Regional Stress Based on Measured Local Stress

  • Obara, Yuzo;Kaneko, Katsuhiko;Kang, Seong-Seung
    • 지질공학
    • /
    • 제26권2호
    • /
    • pp.169-175
    • /
    • 2016
  • Estimations of regional stress are demonstrated in this paper. Firstly, regional stress is defined and the characteristics of regional stress are then discussed based on the local stresses measured by the Compact Conical-ended Borehole Overcoring (CCBO) technique and the results from the earthquake focal mechanism. Secondly, the regional stresses are estimated by a back analysis of three-dimensional finite element models, using the local stresses measured by the CCBO and hydraulic fracturing.

3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life uncle]r 3-Dimensional Rough Contact)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.160-166
    • /
    • 2002
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on the morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate clack initiation life in the substrate, dislocation pileup theory was used.

3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life under 3-Dimensional Rough Contact)

  • 이문주;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.72-79
    • /
    • 2000
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on tile morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

  • PDF

PS-OCT를 이용한 유리 섬유복합재료의 비파괴 검사 (Nondestructive inspection of glass/epoxy composites with PS-OCT)

  • O Jeong Taek;Kim Seung U
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.256-257
    • /
    • 2003
  • Composite materials are widely used in industry because of its high ration of strength vs. weight, and consequently many nondestructive methods have been developing to find stress or subsurface defects like crack, and delamination inside composite material. Among them, optical inspection methods have been widely neglected because of translucent or opaque nature of composite. (omitted)

  • PDF

GREAT 셀을 이용한 삼축압축시험의 수치모사: 예비연구 (Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Preliminary Study)

  • 박도현;박찬희
    • 터널과지하공간
    • /
    • 제32권3호
    • /
    • pp.219-230
    • /
    • 2022
  • GREAT 셀은 실험실에서 심부지층의 열-수리-역학적 조건을 구현하기 위해 설계된 시험장비로서, 시료 길이방향 축을 중심으로 회전하는 측면의 가압장치를 이용하여 다축 응력장을 생성할 수 있고 균열이 포함된 시료에 대해 유체유동 실험이 가능하다. 본 연구에서는 GREAT 셀을 이용한 삼축압축시험을 수치 해석적으로 모사하고 시료 측면에 작용하는 구속압 조건에 따른 역학적 거동을 분석하였다. 균열이 없는 고분자 재질의 시료에 대한 삼축압축시험 사례를 수치모사하여 실험결과와 비교하였다. 수평 구속압의 균등 및 불균등 조건에서 시료 표면의 변형률(원주변형률)을 분석하였으며, 실험결과와 유사한 경향을 보이는 것으로 검토되었다. 추가로 균열이 포함된 가상의 시료모델을 구성하여 균열면의 마찰 특성 및 형상이 시료 변형에 미치는 영향을 조사하였다.

베어링-축 조립체에서 축의 셰이크다운에 관한 연구 (Shakedown Analysis of Shaft in Bearing-Shaft Assembly)

  • 박흥근;박진무;오윤찬
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1740-1747
    • /
    • 2000
  • Under repeated rolling, initial plastic deformation introduces residual stresses which render the steady cyclic state purely elastic. This is called the process of shakedown. Many studies have been done about the shakedown in semi-infinite half space using calculated Hertizian pressure. In this paper shakedown processes in a shaft are studied by finite element analyses of a two dimensional(plane strain) model with elastic-linear-kinematic-hardening-plastic material subjected to repeated, frictionless rolling contact. Symmetric and non-symmetric pressure distributions are obtained using a simplified model of the bearing-shaft assembly. The rolling contact is simulated by repeatedly translating both pressure distributions along the surface of the shaft. By the influence of the non-symmetric pressure, larger residual radial tensile stress is generated in the immediate subsurface layer, which may make a crack propagate and, the subsurface undergoes a zigzag plastic deformation during the shakedown process, which may lead to a crack initiation.

수압파쇄법에 의한 국내 과잉 수평응력 분포 특성에 관한 연구 (Characteristics of Excessive Horizontal Stress in Korea by Hydraulic Fracturing Stress Measurement)

  • 배성호;전석원;김학수;김재민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 2005
  • In this paper, the characteristics of excessive horizontal stress components in Korea were studied using the in-situ hydraulic fracturing stress measurement data over five hundred in 110 individual test boreholes. Based on the in-situ testing data, the magnitude and orientation of the horizontal stress component and variation of stress ratio (K) with depth were investigated. And also horizontal stress magnitude versus depth relationships and distribution limits of stress ratio components were suggested. For the subsurface space above 310 m depth in the entire territory, the stress ratio has a tendency to diminish and be stabilized with depth, but for some areas, it was revealed that the excessive horizontal stress fields with stress ratio close to 3.0 below 200 m in depth have formed. The result of investigation for excessive horizontal stress regions indicates that there exist several regions above 300 m in depth where localized excessive horizontal stresses enough to induce potentially brittle failure around future openings have formed.

  • PDF