• Title/Summary/Keyword: Substratum improvement

Search Result 2, Processing Time 0.02 seconds

Improvement of Manila Clam (Ruditapes philippinarum) Habitat Condition by Adding Crushed Oyster (Crassostrea gigas) Shells to the Substratum (굴 패각을 이용한 바지락 양식장 저질개선 효과)

  • Park, Kwang-Jae;Yoon, Sang-Pil;Song, Jae-Hee;Han, Hyun-Seob;O, Hae-Chong
    • The Korean Journal of Malacology
    • /
    • v.27 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • In an attempt to improve the substrate condition for Manila clam (Ruditapes philippinarum) culture, crushed oyster (Crassostrea gigas) shells were spread on the muddy tidal flat of Namseong-ri, Podu-myeon, Goheung-gun, Jeollannam-do in April 2008. To test the suitability of the crushed oyster shell added substrate, seed clams were transplanted from Taehwa river estuary in Ulsan city in June 2008. Over 23 months of sampling, the mean grain size and the sorting in the experimental site containing the crushed oyster shell were significantly higher than the control site. The ignition loss, water content, chemical oxygen demand (COD) and acid-volatile sulfide (AVS) level were also significantly higher in the crushed oyste shell added substratum. Survival of the clams transplanted to the crushed oyster shell added substratum was significantly higher and all the clams transplanted to the normal muddy substratum died in August 2009, 13 months after the transplantation. At the end of the experiment in April 2010, the transplanted clams reached 36.10 mm in shell length and 8.92 g in total weight with survival of 43.5%. Our study suggested than crushed oyster shell added in the mud dominant substratum greatly improved living condition and survivability of clams.

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.