• 제목/요약/키워드: Substitution reaction

검색결과 583건 처리시간 0.021초

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

초고성능 콘크리트의 수화모델에 대한 연구 (Analysis of hydration of ultra high performance concrete)

  • 왕하이롱;왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

Structure-Reactivity Relationship of Substituted Phenylethyl Arenesulfonates with Substituted Pyridines under High Pressure

  • 박헌영;손기주;정덕영;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.1010-1013
    • /
    • 1997
  • Nucleophilic substitution reactions of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines were investigated in acetonitrile at 60 ℃ under respective pressures. The magnitudes of the Hammett reaction constants, ρX, ρY and ρZ indicate that a stronger nucleophile leads to a greater degree of bond formation of C-N and a better leaving group is accompanied by a less degree of bond breaking. The magnitude of correlation interaction term, ρij can be used to determine the structure of the transition state (TS) for the SN reaction. As the pressure is increased, the Hammett reaction constants, ρX and |ρY|, are decreased, but correlation interaction coefficient, ρXZ and |ρYZ|, are increased. The results indicate that the reaction of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines probably moves from a dissociative SN2 to early-type concerted SN2 mechanism by increasing pressure. This result shows that the correlation interaction term ρij can be useful tool to determine the structure of TS, and also the sign of the product ρXZ·ρYZ can be predict the movement of the TS.

Cobalt(Ⅲ) Complexes of N₄and $N_2O_2$ System Tetradentate Ligands : Amino Acid Cobalt(Ⅲ) Complexes of 1,3-Diaminopropane-N,N'-Di-α-(β-methyl)-Pentanoic Acid

  • 함혜영;이석중;김영상;준무진
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권5호
    • /
    • pp.428-432
    • /
    • 1996
  • Amino acid cobalt(Ⅲ) complexes of 1,3-diminopropane-N,N'-di-α-(β-methyl)-pentanoic acid (H2dpdmp), uns-cis-[Co(dpdmp)(aa)] (aa=glycine, S-alanine, R-aspartic acid, sarcosine) have been prepared from the reaction between the uns-cis-[Co(dpdmp)Cl2]- complex and the corresponding amino acid. In the reaction with the uns-cis-[Co(dpdmp)Cl2]- complex, glycine and S-alanine have yielded both merridional and facial isomers, while R-aspartic acid and sarcosine, only merridional isomers. The stereospecific substitution reaction of R-aspartic acid to racemic uns-cis-[Co(dpdmp)Cl2]- complex has yielded two merridional diastereomers; ΛR-uns-cis- and ΛR-uns-cis-[Co(dpdmp)(R-asp)]. It is of interest to note that this is one of the few CoⅢ(ONNO)(aa) type complex preparations, which gives only one isomer with stereospecificity. On the other hand, two merridional products obtained from the reaction of sarcosine with racemic uns-cis-[Co(dpdmp)Cl2]- are turned out to be mixtures of optical isomers.

Theoretical Studies of the Gas-Phase Identity Nucleophilic Substitution Reactions of Cyclopentadienyl Halides

  • Lee, Ik-Choon;Li, Hong-Guang;Kim, Chang-Kon;Lee, Bon-Su;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.583-592
    • /
    • 2003
  • The gas phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, Br) with cyclopentadienyl halides (1) are investigated at the B3LYP/6-311+G**, MP2/6-311+G** and G2(+)MP2 levels involving five reaction pathways: σ-attack $S_N2$, β-$S_N$2'-syn, β-$S_N$2'-anti, γ-$S_N$2'-syn and γ-$S_N$2'-anti paths. In addition, the halide exchange reactions at the saturated analogue, cyclopentyl halides (2), and the monohapto circumambulatory halide rearrangements in 1 are also studied at the same three levels of theory. In the σ-attack $S_N2$ transition state for 1 weak positive charge develops in the ring with X = F while negative charge develops with X = Cl and Br leading to a higher energy barrier with X = F but to lower energy barriers with X = Cl and Br than for the corresponding reactions of 2. The π-attack β-$S_N$2' transition states are stabilized by the strong $n_C-{\pi}^{*}_{C=C}$ charge transfer interactions, whereas the π-attack γ-$S_N$2' transition states are stabilized by the strong $n_C-{\sigma}^{*}_{C-X}$ interactions. For all types of reaction paths, the energy barriers are lower with X = F than Cl and Br due to the greater bond energy gain in the partial C-X bond formation with X = F. The β-$S_N$2' paths are favored over the γ-$S_N$2' paths only with X = F and the reverse holds with X = Cl and Br. The σ-attack $S_N2$ reaction provides the lowest energy barrier with X = Cl and Br, but that with X = F is the highest energy barrier path. Activation energies for the circumambulatory rearrangement processes are much higher (by more than 18 kcal $mol^{-1}$) than those for the corresponding $S_N2$ reaction path. Overall the gas-phase halide exchanges are predicted to proceed by the σ-attack $S_N2$ path with X = Cl and Br but by the β-$S_N$2'-anti path with X = F. The barriers to the gas-phase halide exchanges increase in the order X = F < Br < Cl, which is the same as that found for the gas-phase identity methyl transfer reactions.

C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79)

  • 박건용;박창혁;박병기
    • 한국염색가공학회지
    • /
    • 제13권5호
    • /
    • pp.24-24
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N-diacetoxyethyl-2-acylamino-5-ethoxy -2′-bromo-4′,6′-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via S/sub n/2 reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of $OH^{-}$ on the carbon atom, which is in acceptor ring, adjacent to azo group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N,N-diacetoxyethyl group.

C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79)

  • 박건용;박창혁;박병기
    • 한국염색가공학회지
    • /
    • 제13권5호
    • /
    • pp.312-319
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N- diacetoxyethyl -2- acylamino-5-ethos y -2'-bromo-4',6'-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via $S_N2$ reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of OH- on the carbon atom, which is in acceptor ring, adjacent to auto group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N, N-diacetoxyethyl group.

  • PDF

LaMnO3형 페롭스카이트 산화물에서 입자상물질의 촉매연소반응 (Catalytic Combustion of Carbon Particulate over LaMnO3 Perovskite-Type Oxides)

  • 이용화;이근대;박성수;홍성수
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.619-626
    • /
    • 2004
  • We have studied the catalytic combustion of soot particulates over perovskite-type oxides prepared by malic acid method, The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxide. In addition, the reaction conditions such as temperature and $O_2$ concentration were investigated. The partial substitution of alkali metals into A site in the $LaMnO_3$ catalyst, enhanced the catalytic activity in the combustion of carbon particulate and the activity was shown in the order: Cs > K > Na. For the $La_{1-x}Cs_{x}MnO_{3}$ catalysts, the catalytic activity showed the maximum value with x=0.3 but no more increase on the catalytic activity was shown with x > 0.3. For the $La_{0.8}Cs_{0.2}MnO_{3}$ catalyst, the substitution of Fe or Ni increased the ignition temperature. The ignition temperature decreased with an increase of $O_2$ concentration, however, no more increase in the catalytic activity was shown with $O_2$ concentration > 0.2. The introduction of NO into reactants showed no effect on the catalytic activity.

저농도 알칼리 생체유리의 물성 및 Hydroxyapatite 형성 (Physical Properties and Hydroxyapatite Formation of Low Alkali Containing Bioglass)

  • 김용수;김철영
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1521-1528
    • /
    • 1994
  • To improve mechanical strength of bioglass, it is considered to use the glass as a coating material to alumina, but the difference in thermal expansion coefficient between two materials is too high to make a good coating. The aim of the present study, therefore, is to find out proper glass composition matching its thermal expansion coefficient to that of alumina without losing biocompatibility. In the present work, various glasses were prepared by substituting B2O3 and CaO for Na2O in the glass system of 55.1%SiO2-2.6%P2O5-20.1%Na2O-13.3%CaO-8.9%CaF2 (in mole%), and the thermal expansion property and reaction property in tris-buffer solution for the resulting glasses were measured. The thermal expansion coefficient of the glass was decreased with the substitution of B2O3 for Na2O, and it became close to that of alumina in the glass in which 8 mole% of CaO was substituted for Na2O. Hydroxyapatite formation was enhanced and silica rich layer thickness was decreased with B2O3 substitution for Na2O. CaO substitution for Na2O didn't deteriorated the hydroxyapatite development.

  • PDF

(베타-디케토네이토) 옥소바나듐 (IV) 착물에서의 베타-디케톤 치환반응에 관한 속도론적 연구 (A Kinetic Study of the Substitution of $\beta$-Disketone in Bis($\beta$-diketonato)Oxovanadium (IV))

  • 황규탁;김정성;신한철;김인환;김기태
    • 대한화학회지
    • /
    • 제34권4호
    • /
    • pp.319-324
    • /
    • 1990
  • 비스(아세틸아세토네이토)옥소바나듐(Ⅳ) 착물(VO (acac)$_2$)에서 하나의 아세틸아세톤(acac) 배위자가 디벤조일메탄(dbm)에 의해 치환되는 반응속도를 여러 가지 용매에서 분광광도법으로 측정했다. 반응조건을 [VO (acac)$_2$] 》[Hdbm]으로 했을 때 치환반응의 속도식은 다음과 같다. 속도 = k$_2$K[VO(acac)$_2$] [Hdbm] / (1 + K[VO(acac)$_2$])여기에서 평형상수 K는 [VO (acac)$_2$dbmH] / [VO(acac)$_2$][Hdbm]이며, 반응속도상수 k$_2$는 dbmH착물내에서 Hdbm으로부터 acac-로의 양성자 이동속도에 해당하는 값이다.

  • PDF