• Title/Summary/Keyword: Substituted benzyl alcohol

Search Result 21, Processing Time 0.042 seconds

Substituent Effects on the Binding Energies of Benzyl Alcohol-H2O Clusters: Ab initio Study

  • Ahn, Doo-Sik;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.262-266
    • /
    • 2002
  • Computations are presented for the ortho- and para-substituted benzyl alcohol-$H_2O$ clusters. A variety of conformers are predicted, and their relative energies are compared. Binding energies of the clusters are computed, and detailed analysis is presented on the effects of substitution on the strength of the hydrogen bond in the clusters. F- and $NH_2-$ substituted clusters are studied to analyze the effects of electron-withdrawing and electron-pushing groups. In para-substituted clusters, the inductive effects are dominant, affecting the binding energies in opposite way depending on whether the hydroxyl group is proton-donating or -accepting. For ortho-substituted clusters, more direct involvement of the substituting group and the resulting geometry change of the hydrogen bond should be invoked to elucidate complicated pattern of the binding energy of the clusters.

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-4,4'-Bipyridine Complex (크롬(VI)-4,4'-Bipyridine 착물에 의한 치환 벤질 알코올류의 산화반응 속도론과 메카니즘)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.462-469
    • /
    • 2012
  • Cr(VI)-4,4'-bipyridine complex(4,4'-bipyridinium dichromate) was synthesized by the reaction of 4,4'-bipyridine with chromium trioxide in H2O, and characterized by IR, ICP. The oxidation of benzyl alcohol using 4,4'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene$CH_3$, H, m-Br, m-$NO_2$) smoothly in N,N'-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.63(303K). The observed experimental data have been rationalized as follows; the proton transfer occurs after the prior formation of a chromate ester in the rate determining step.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using Cr(VI)-6-Methylquinoline (Cr(VI)-6-Methylquinoline을 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.372-376
    • /
    • 2015
  • 6-MQCC (Cr(VI)-6-methylquinoline) complex was synthesized by the reaction of 6-methylquinoline with chromium(VI) trioxide in 6 M HCl. The structure was characterized using IR (Infrared Spectroscopy) and ICP (Inductively Coupled Plasma) analysis. The oxidation of benzyl alcohol using 6-MQCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in descending order of DMF > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as sulfuric acid ($H_2SO_4$), 6-MQCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$) were effectively oxidized. Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308 K). The observed experimental data was used to rationalize the fact that the hydride ion transfer occurred at the rate-determining step.

Kinetics of the Oxidation of Substituted Benzyl Alcohols with 4-(Dimethylamino)pyridinium Dichromate (4-(Dimethylamino)pyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Choi, Sun do;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.153-157
    • /
    • 2005
  • 4-(Dimethylamino)pyridinium dichromate was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium(VI)trioxide in $H_2O$, and characterized by IR, EA and ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexen < chloroform < acetone < N,N-dimethylformamide. In the presence of hydrochloric acid(HCl), 4-(dimethylamino)pyridinium dichromate oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) smoothly in N,N-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron-withdrawing groups retarded the reaction. The Hammett reaction constant($\rho$) was -0.70 at 303K. The observed experimental data have been rationalized as follows: the proton transfer occurs after the prior formation of a chromate ester in the rate-determining step.

A Study for Mechanism and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex[Cr(VI)-2-methylpyrazine] (Cr(VI)-헤테로고리 착물[Cr(VI)-2-methylpyrazine]를 이용한 치환 벤질 알코올류의 산화반응과 메카니즘에 관한 연구)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6039-6046
    • /
    • 2013
  • Cr(VI)-heterocyclic complex[Cr(VI)-2-methylpyrazine] was synthesized by the reaction between of heterocyclic compound(2-methylpyrazine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using Cr(VI)-2-methylpyrazine in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order : cyclohexene${\rho}$) was Cr(VI)-2-methylpyrazine= -0.65(308K). The observed experimental data have been ratiolized. The hydride ion transfer causes the prior formation of a chromate ester in the rate-determining step.

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate) (크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.648-653
    • /
    • 2014
  • Cr(VI)-heterocyclic complex (2,4'-bipyridinium chlorochromate) was synthesized by the reaction between heterocyclic compound(2,4'-bipyridine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant (${\varepsilon}$), in the order : N,N-dimet-hylformamide (DMF) > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as hydrochloric acid (HCl solution), 2,4'-bipyridinium chlorochromate oxidized benzyl alcohol (H) and its derivatives (p-$CH_3$, m-Br, m-$NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.67 (303 K). The observed experimental data have been rationalize the proton transfer occurred followed the formation of a chromate ester in the rate-determining step.

Kinetics of the Oxidation of Substituted Benzyl Alcohols using 6-Methylquinolinium Dichromate (6-Methylquinolinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5990-5996
    • /
    • 2011
  • 6-Methylquinolinium dichromate[$(C_{10}H_9NH)_2Cr_2O_7$] was synthesized by the reaction of 6-methylquinoline with chromium trioxide in $H_2O$, and characterized by IR, ICP. The oxidation of benzyl alcohol using 6-methylquinolinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene < chloroform < acetone < N,N- dimethylformamide. In the presence of hydrochloric acid($H_2SO_4$ solution), 6-methylquinolinium dichromate oxidized benzyl alcohol and its derivatives(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$) smoothly in DMF. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.67(303K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Kinetic Study on the Oxidation Reaction of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,2'-Bipyridinium Dichromate) (크롬(VI)-헤테로고리 착물(2,2'-Bipyridinium Dichromate)에 의한 치환 벤질 알코올류의 산화반응에 대한 속도론적 연구)

  • Kim, Young Sik;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.241-246
    • /
    • 2012
  • Cr(VI)-heterocyclic complex (2,2'-bipyridinium dichromate) was synthesized by the reaction between of 2,2'-bipyridine and chromium trioxide in $H_2O$, and characterized by IR and ICP. The oxidation of benzyl alcohol using 2,2'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexene < chloroform < acetone < N,N-dimethylformamide. In the presence of DMF solvent with acidic catalyst such as $H_2SO_4$ solution, 2,2'-bipyridinium dichromate oxidized the benzyl alcohol and its derivatives (p-$p-OCH_3$, $m-CH_3$, H, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant was -0.66 (303 K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using 2,4'-Bipyridinium Dichromate (2,4'-Bipyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구)

  • Kim, Young Sik;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.718-722
    • /
    • 2011
  • 2,4'-Bipyridinium dichromate [$(C_{10}H_8N_2H)_2Cr_2O_7$] was synthesized by the reaction of 2,4'-bipyridinie with chromium trioxide in $H_2O$. The structure was characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase in the order of the dielectric constant (${\varepsilon}$), in the order : cyclohexene < chloroform < acetone < N,N'-dimethylformamide. In the presence of hydrochloric acid, 2,4'-bipyridinium dichromate effectively oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) in N,N'-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant (${\rho}$) was -0.65 at 303 K. The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

3D-QSAR Analyses on the Inhibition Activity of 4-($R_1$)-Benzyl Alcohol and 4-($R_2$)-Phenol Analogues Against Tyrosinase (4-($R_1$)-Benzyl alcohol 및 4-($R_2$)-Phenol 유도체들의 Tyrosinase 활성 저해에 대한 3D-QSAR 분석)

  • Kim, Sang-Jin;Lee, Myoung-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.271-276
    • /
    • 2009
  • The 3-dimensional quantitative structure-activity relationships (3D-QSARs) models between the substituents with changing groups ($R_1$ & $R_2$) of 4-($R_1$)-benzyl alcohol and 4-($R_2$)-phenol derivatives as substrate molecule and their inhibitory activities against tyrosinase were derived and discussed quantitatively. The optimized CoMSIA 2 model have best predictability and fitness ($r^2\;=\;0.858$ & $q^2\;=\;0.951$). The contour maps of optimized CoMSIA 2 model showed that, the inhibitory activities of the analogues against tyrosinase were expected to increase when hydrophobic favor, negative charge favor, steric disfavor and hydrogen bond donor disfavor groups were substituted at the $R^2$ position. When the positive charge and the hydrogen bond donor favor groups were substituted at the $R_1$ position, it is predicted that the substituents will be able to increase the inhibitory activity. However, hydrogen bond acceptor did not affect inhibitory activities of tyrosinase.