• Title/Summary/Keyword: Substituent

Search Result 633, Processing Time 0.024 seconds

Substituent Effect on the Fungicidal Activity of New N-substituted Benzotriazol-1-yl Derivatives (새로운 N-치환 benzotriazol-1-yl유도체의 항균활성에 미치는 치환기 효과)

  • Yu, Seong-Jae;Sung, Min-Gyu;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.80-84
    • /
    • 1997
  • Series of new chiral N-substituted benzotriazol-1-yl derivatives were synthesized and their fungicidal activities in vitro against gray mold(Botrytis cinerea), black spot(Alternaria kikuchiana) and phytophthora blight(Phytophthora capsici) were measured by the agar medium dilution method. The substituents effects between the fungicidal activities (obs. $pI_{50}$) and a various physicochemical parameters of phenoxy or thiophenoxy group(X) & alkyl or phenyl group(Y) were analyzed by the multiple regression technique. From the analyzed substituent effects, the structure-activity relationship(SAR) equations shows that the antifungal activities depend on the parameters for the optimal molecular hydrophobicity($({\Sigma}logP)_{opt}$), Van der Waals (${\Sigma}Vw$>0) volume(${\AA}^3$) and inductive constant with electron withdrawing group(${\sigma}_I$,Y>0). The activity in affected by the inductive effect (${\sigma}_I$,Y>${\sigma}_g$X) of Y-group rather than the X-group. The phenoxy substituents, 1, showed higher antifungal activity tn the thiophenoxy substituents, 2. For 1, polar substituent constant(${\sigma}^*$) was an important factor in determining the activity. And the tribromomethyl substituent, 1g showed the highest activity against the tee fungi.

  • PDF

The Fluorescence Behavior of the Responsive Macrocycle by Aromatic Imine Molecules

  • Choi, Chang-Shik;Jeon, Ki-Seok;Lee, Ki-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.71-74
    • /
    • 2004
  • The macrocycle L exhibited a switch on-off behavior through the fluorescent responses by aromatic imine molecule 1 (X=H) / trifluoroacetic acid (TFA). In the 'switch on' state, it was supposed that the aromatic imine molecule 1 is in the cavity of macrocycle L and a photoinduced electron transfer (PET) from the nitrogen of azacrown part to the anthryl group is inhibited by the interaction between the aromatic imine molecule 1 and the azacrown part of macrocycle L. In the 'switch off' state, it was supposed that the protonated imine molecule 1 is induced by the continuous addition of TFA and a repulsion between the protonated azacrown part and the protonated imine molecule 1 is occurred. It was considered that this process induces the intermolecular PET from the protonated imine molecule 1 to the anthryl group of macrocycle L because of a proximity effect between the anthryl group and the protonated imine molecule 1. From the investigation of the transient emission decay curve, the macrocycle L showed three components (3.45 ns (79.72%), 0.61 ns (14.53%), and 0.10 ns (5.75%). When the imine molecule 1 was added in the macrocycle L as molar ratio=1:1, the first main component showed a little longer lifetime as 3.68 ns (82.75%) although the other two components were similar as 0.64 ns (14.28%) and 0.08 ns (2.96%). On the contrary, when the imine molecule 3 (X=C1) was added in the macrocycle L as molar ratio=l:1, all the three components were decreased such as 3.27 ns (69.83%), 0.44 ns (13.24%), and 0.06 ns (16.93%). The fluorescent pH titration of macrocycle L was carried out from pH=3 to pH=9. The macrocycle L and C $U^{2+}$- macrocycle L complex were intersected at about pH=5, while the E $u^{3+}$ -macrocycle L complex was intersected at about pH=5.5. In addtion, we investigated the fluorescence change of macrocycle L as a function of the substituent constant ($\sigma$$_{p}$$^{o}$) showing in the para-substituent with electron withdrawing groups (X=F, Cl) and electron donating groups (X=C $H_3$, OC $H_3$, N(C $H_3$)$_2$), respectively, as well as non-substituent (X=H).).ctively, as well as non-substituent (X=H).

  • PDF