• Title/Summary/Keyword: Subsidence Plate

Search Result 29, Processing Time 0.02 seconds

Marine Terrace of the Jinha-Ilgwang Area, Southeast Korea (진하-일광 지역의 해안 단구)

  • 최성자
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.233-242
    • /
    • 2003
  • The southeasternmost coastal area of the Korean peninsula has been regarded as a seismologically stable area as neither Quaternary faults nor earthquake activity has been reported. To clarify whether the active tectonic movement has occurred or not, a digital marine terrace mapping and fracture mapping have been done in the coastal area. Bed rocks are composed of the Cretaceous volcanic and sedimentary rocks and the Paleogene granite. Wave-cut platform in the area is smaller and narrower relative to that of the northern coastal area. Most of the platforms in the area have little Quaternary sediment. The platforms except the Holocene terrace (1 st terrace) can be divided into three steps. The lowest platform (2nd terrace) has an altitude of 8-11 m. The broad middle one (3rd terrace) is 17 to 22 m high. The highest terrace (4th terrace) is a narrow and sporadic bench with an altitude of about 44 m high. The lowest terrace is correlated to the 2nd terrace of the northern area, which corresponds to the oxygen isotopic stage 5a. The uplift rate calculated from a graphic method is 0.19 m/ky. This low uplift is typical of an intra-plate, suggesting that the area is tectonically stable. The elevation of the platforms tends slightly lower from the north to the south in the survey area. The decreasing altitude of the platforms towards the south is interpreted to result from a local block tilting during the Latest Pleistocene. This also indicates that the eastern coast of the Korean peninsula has been suffering a subsidence to the south.

A Study of Crust Structure at Svalbard Archipelago in Arctic Area by Using Gravity Data (중력자료를 이용한 북극 스발바드 군도의 지각구조연구)

  • Yu, Sang-Hoon;Yi, Song-Suk;Min, Kyung-Duck
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Gravity characteristics are investigated in the vicinity of the DASAN scientific station, located at the Svalbard Archipelago, the Arctic using ArcGP data. Boundary effects of free-air gravity anomalies, which appeared generally at the continental margin, are erased after Bouguer correction was applied. Complete Bouguer anomalies produced after terrain correction by GrOPO30 show that gravity anomalies increase from continent to marine. This phenomena seem to be related to the rise of Moho discontinuity. The cut-off frequency of 0.16 was decided after power spectrum analysis and the gravity anomalies were divided into two parts. Residual anomalies in high frequency part show that characteristics of high values along the faults and of low values related to thick sediments in the continent. Characteristic is low values from basement subsidence of continental slope or thick sediments in the marine. The undulation of Moho discontinuity from 3-D inversion modeling show typical characteristics of continental margin that become higher from Svalbard archipelago to Knipovich ridge bordering Eurasian plate.

  • PDF

Comparative Study on Biomechanical Behavior of Various Cervical Stand-Alone Cage Designs (경추용 일체형 추간체 유합 보형재의 디자인 변화에 따른 생체역학적 효과 비교 연구)

  • Park, Kwang Min;Jung, Tae Gon;Jeong, Seung Jo;Lee, Sung Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.943-950
    • /
    • 2016
  • The purpose of this study was to evaluate and compare by finite element analysis the biomechanical performance, in terms of cervical stand-alone cage screw insert angle (Type 3 - 5: 2 Screws) and screw arrangement (Type 6 and 7: 3 Screws / Type 8 and 9: 4 Screws), and the range of motion (ROM) of traditional anterior cervical discectomy of a fusion device (Type 1: Cage / Type 2: Cage + ACP). Our study suggests that the biomechanical behavior of a postoperative cervical spine could indeed be influenced by design features, such as screw angle and number of screws. In particular, ROM and the risk of subsidence were more sensitive during extension about type 5 (Insert Angle $20^{\circ}$). Our study also suggested that the number of screw asymmetries between up and down for type 6 and 7 could result in differences in the risk of screw fracture manifesting in different clinical aspects.

Stratigraphy of the Kachi-1 Well, Kunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 까치-1공의 층서)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.473-490
    • /
    • 2007
  • Strata of the Kachi-1 well, Kunsan Basin, offshore western Korea, were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the well: Triassic, Late Jurassic-Early Cretaceous, Early Cretaceous, Late Cretaceous, and Middle Miocene units. Each unit represents a tectono-stratigraphic unit that provides time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of the Kunsan Basin. In the late Late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of these wrench faults until the Late Cretaceous caused a mega-shear in the basin, forming a large-scale pull-apart basin. However, in the Early Tertiary, the Indian Plate began to collide with the Eurasian Plate, forming a mega-suture zone. This orogenic event, namely the Himalayan Orogeny, continued by late Eocene and was probably responsible for initiation of right-lateral motion of the Tan-Lu fault system. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the Kunsan Basin. Thus, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin. After the Oligocene, the Kunsan Basin has maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basin.

Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - (GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 - 2006년 분화를 중심으로 -)

  • Kim, Su-Kyung;Hwang, Eui-Hong;Kim, Young-Hwa;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2013
  • Augustine is an active stratovolcano located in southwest of Cook Inlet, about 290 kilometers southwest of Anchorage, Alaska. Between January 11 and 28, 2006, the volcano erupted explosively 14 times. We collected twelve permanent GPS stations operating by Plate Boundary Observatory (PBO) from 2005 to 2011. All data processing was carried out using Bernese GPS Software V5.0 with IGS precise orbit. Static baseline processing by fixing AC59 station was applied for the volcano activity monitoring. AC59 is the nearest (about 24.5 km) station to Augustine volcano, and located on North America Plate including Augustine Island. The test results show inflation (9.7 cm/yr) and deflation (-9.2 cm/yr) of volcano before and after eruption around crater clearly. After volcano activity has reached a plateau, some of the GPS stations installed north of the volcano show ground subsidence phenomenon caused by compaction of pyroclastic flows. These results indicate the possibility of using surface deformation observed by GPS for monitoring and prediction of volcano activity.

An Experimental Study on Ground Reinforcement Effect of Concrete and Expansion Mat for Prevention of Buried Pipe Damage (지중매설관 손상 방지를 위한 콘크리트매트와 팽창매트의 지반보강효과에 관한 실험적 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Yuu, Jungjo;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.91-101
    • /
    • 2019
  • Recently, small-scale excavation like ground cavity restoration and buried pipe replacement works are being carried out in urban area, in order to improve living convenience. This paper describes experiment results on the ground reinforcement method that can reduce the buried pipe damage, when the differential settlement occurred due to poor compaction of ground below the buried pipe. Plate load tests were conducted to evaluate a reinforcement effect of ground using concrete mat and expansion mat in the ground below the buried pipe. The results showed that the stress reduction ratio by concrete mat and expansion mat according to the surcharge load was about 46%~48% and 39%~42%, respectively. Therefore, the differential settlement of the buried pipe and the ground deformation below the buried pipes were reduced by the reinforcement effect of the concrete mat and expansion mat. This means that it is possible to prevent a buried pipe damage due to underground cavity and ground subsidence, if concrete mat and expansion mat are reinforced in the ground below the buried pipe or on the ground between the buried pipes.

Posterior Cervical Fixation with Nitinol Shape Memory Loop in the Anterior-Posterior Combined Approach for the Patients with Three Column Injury of the Cervical Spine: Preliminary Report

  • Yu, Dong-Kun;Heo, Dong-Hwa;Cho, Sung-Min;Choi, Jong-Hun;Sheen, Seung-Hun;Cho, Yong-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.303-307
    • /
    • 2008
  • Objective: The authors reviewed clinical and radiological outcomes in patients with three column injury of the cervical spine who had undergone posterior cervical fixation using Nitinol shape memory alloy loop in the anterior-posterior combined approach. Materials: Nine patients were surgically treated with anterior cervical fusion using an iliac bone graft and dynamic plate-screw system, and the posterior cervical fixation using Nitinol shape memory loop ($Davydov^{TM}$) at the same time. A retrospective review was performed. Clinical outcomes were assessed using the Frankel grading method. We reviewed the radiological parameters such as bony fusion rate, height of iliac bone graft strut, graft subsidence, cervical lordotic angle, and instrument related complication. Results: Single-level fusion was performed in five patients, and two-level fusion in four. Solid bone fusion was presented in all cases after surgery. The mean height of graft strut was significantly decreased from $20.46{\pm}9.97mm$ at immediate postoperative state to $18.87{\pm}8.60mm$ at the final follow-up period (p<0.05). The mean cervical lordotic angle decreased from $13.83{\pm}11.84^{\circ}$ to $11.37{\pm}6.03^{\circ}$ at the immediate postoperative state but then, increased to $24.39{\pm}9.83^{\circ}$ at the final follow-up period (p<0.05). There were no instrument related complications. Conclusion: We suggest that the posterior cervical fixation using Nitinol shape memory alloy loop may be a simple and useful method, and be one of treatment options in anterior-posterior combined approach for the patients with the three column injury of the cervical spine.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.