• 제목/요약/키워드: Submerged vortex

검색결과 46건 처리시간 0.023초

펌프 흡수정내 발생된 보텍스에 대한 CFD 예측 (CFD Prediction on Vortex in Sump Intake at Pump Station)

  • 박상언;노형운
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.39-46
    • /
    • 2007
  • In large pump station, vortex generation such as free-surface vortex and submerged vortex occurring around pump intake, or at bell-mouth inlet has been an important flow characteristics which should be considered always to keep away the suction of air-entrained or cavitated flow. In this study, a commercial CFD code was used to predict accurately the vortex generation for the specified intake design. These result shows the preliminary result of submerged vortex prediction for the Turbo-machinery Society of Japan Sump Test CFD standard model. At bottom wall, air volume fraction (red color) was found in a large scale to explain the submerged vortex generation at particular operation and configuration condition. And these indicate the free surface formation behind the bell mouth. Particularly, non-uniform approaching flow is a major parameter to govern the occurrence of the free-surface vortex. Futhermore the comparison between turbulence ($k-{\epsilon}$ & $k-{\omega}$ model) mode were executed in this study.

다중 흡수정을 갖는 펌프장 모델의 유동균일성 해석 (Numerical Analysis on the Flow Uniformity in a Pump Sump Model with Multi Pump Intake)

  • 최종웅;최영도;임우섭;이영호
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.14-22
    • /
    • 2009
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite basin with no close walls or floors and with no stray currents. Therefore, flow into the pump intake is with no vortices or swirling. However, pump station designers relying on these curves to define the operating conditions for the pump selected sometimes meet the reductions of capacity and efficiency, as well as the increase of vibration and additional noise, which were caused by air-entered flow in the pump station. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump of pump station model. Multi-intake sump model with anti-submerged vortex device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the vortex generation in the pump station accurately. The analysed results by CFD show that the vortex structure and effect of anti-submerged vortex device are different at each pump intake channel.

CFD에 의한 와류방지장치(AVD)가 설치된 흡수정내 펌프의 성능평가에 관한 연구 (Study on Performance Analysis of Pump within Sump Model with AVD installation by CFD)

  • 최종웅;박노석;김성수;박상수;이영호
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.463-469
    • /
    • 2012
  • The efficiency of the flow mixed pump installed within the bell-mouth in the sump is reduced by the flow characteristics of around intakes. Strong submerged vorticies can be successfully suppressed by installing an AVD(anti-submerged vortex device) on the bottom of pump intake channel just below the bell-mouth. Sump model with AVD device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the efficiency of the pump with the AVD installation in the pump station accurately.

경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의 (Numerical Simulation of Velocity Fields and Vertex Generation around the Submerged Breakwater on the Sloped Bottom)

  • 허동수;김도삼
    • 한국해안해양공학회지
    • /
    • 제15권3호
    • /
    • pp.151-158
    • /
    • 2003
  • 잠제 주변의 유속장과 와의 발생에 대한 이해는 잠제의 소파메커니즘과 표사 및 구조물의 안정과 관련하여 중요한 기초자료로 활용될 수 있다. 본 연구에서는 일정한 경사수역에 설치된 불투과잠제 주변의 유속장의 해석과 와(vortex)서 발생을 수치적으로 모의하기 위해 자유수면의 추적기법인 VOF법에 기초하고 있는 김 등(2001, 2002)이 제안한 2차원 수치파동수로를 이용하였다. 특히, 잠제 주변의 정상류의 해석을 통해 잠제의 기하형상 및 파랑의 입사조건에 따른 와의 발생형태를 고찰하였다. 수치모의 결과 잠제 전면에서는 반시계 방향의 와가 발생하였고 잠제 후면에서는 시계방향의 와가 발생하였으며 와의 크기는 입사파고와 주기에 가장 민감하였다.

고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화 (Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor)

  • 김도헌;신봉기;손민;구자예;강문중;장홍빈
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

수리구조 개선을 통한 다중 펌프 흡수정에서 발생하는 보텍스 방지 대책 수립에 관한 연구 (Modifications to Hydraulic Structures for Anti-submerged Vortex in a Multi Pump Intake using CFD simulation Technique)

  • 박노석;김성수;정우창;김종오
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.31-39
    • /
    • 2011
  • In order to suggest the methodology for achieving anti-vortex device within multi pump intake well, CFD(Computational Fluid Dynamics) simulation were conducted for two alternative suggestions. Multi-intake sump model with anti-vortex device basins were designed and the characteristics of submerged vortex were investigated in the flow field by numerical simulation. From the results of simulations, to install the horizontal plate and vertical cross plates within basins were effective for preventing air-induction vortex.

Vortex melting법에 의한 알루미늄 chip의 재활용에 관한 연구 (A Study on the Recycling of Aluminum Chip by Vortex Melting Method)

  • 김정호;김경민;윤의박
    • 자원리싸이클링
    • /
    • 제6권4호
    • /
    • pp.24-30
    • /
    • 1997
  • 최근 금속 스크랩의 재활용에 있어서 고품질의 2차지금을 제조하고자 하는 연구가 진행되고 있다. 본 연구에서는 알루미늄 주조품의 기계가공 후 발생하는 알루미늄 Chip을 보다 효율적이고 신속하게 재활용하기 위하여 vortex melting법을 수행하였다. Vortex melting 기술을 chip의 용해공정에 도입하였다. 최적의 vortex 깊이는 수모델 실험을 통하여 결정되었는데, 교반자의 형상, 위치, 회전속도 및 수위 등에 의해 결정된다. Chip의 용해전 상온, 200, 300, $400^{\circ}C$에서 예열하여 vortex의 중앙에 투입하엿다. 따라서, 온도에 따른 회수율을 결정할 수 있었다. 본 실험의 결과로서, 최적의 vortex 깊이는 교반자의 형상, 회전속도에 의해서만 영향을 받으며, 최고의 회수율, 97%는 chip의 예열온도가 $300^{\circ}C$일 경우 얻어졌다.

  • PDF

펌프장 Sump 모델 시험기준 수립을 위한 실험 연구 (An Experimental Study on Standard Establishment of Sump Model Test in Pump Station)

  • 이영호;김범석;이동근;오유미
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.582-588
    • /
    • 2005
  • An experimental study to establish a standard of sump model test of pump station was implemented. Comparison of foreign standard was also performed. Configuration condition around a bell mouth suction intake was easily adjusted by 3-axis traversing system and partition allocation. Operational condition was also varied widely to give accurate test data. PIV was also introduced to produce Quantitative analysis of flow field such as free-surface vortex and submerged vortex occurring in the model test. More detailed vortex behaviors were represented by PIV analysis.

  • PDF

Study on Surface Vortices in Pump Sump

  • Long, Ngo Ich;Shin, Byeong Rog;Doh, Deog-Hee
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.60-66
    • /
    • 2012
  • One of commonly physical phenomena encountered in pump sump systems in which its significant influence to the hydraulic performance of pump system plays an important role in the field of fluid engineering, is the appearance of free surface and submerged vortices. In this paper, a study of the vortices behavior and their formative mechanism of asymmetry is considered in this paper by using numerical approach. The Reynolds-Averaged Navier-Stokes (RANS) equations and k-omega Shear Stress Transport turbulence model used to describe the properties of turbulent flows, in company with VOF multiphase model, are implemented by Fluent code with multi-block structured grid system. In the numerical simulation, the calculated elevation of air-water interface and vortex core contours are used to classify visually surface vortices as well as submerged vortices. It is shown that the free surface vortex is identified by the concavity of liquid region from the free surface and swirling flow at that own plane. To investigate the distinctive behavior of these vortices corresponding to each given flow rate at the same water level, some numerical testing of them are considered here in such a manner that the flow pattern of surface vortex are obtained similarly to the obtained results from experiment. Furthermore, the influence due to the change of grid refinement and the variation of depth of the concavity are also considered in this paper. From that, these influential factors will be implemented to design a good pump sump with higher performance in the future.

잔류내 응집 와류의 수치 해석 (Numerical Study of Coherent Vortex in Late Wake Downstream of a Sphere in Weakly Stratified Fluid)

  • 이승수;이영규;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1863-1868
    • /
    • 2003
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

  • PDF