• Title/Summary/Keyword: Submerged structure

Search Result 330, Processing Time 0.028 seconds

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

The Analysis of the Current Situation in Design Change of Temporary Structures (가설구조물의 설계반영실태 분석)

  • Lee, Y.S.;Lee, M.G.;Kim, Y.G.;Paik, S.W.;Song, C.G.;Han, D.H.;Oh, T.K.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2014
  • The construction accidents in temporary structures have ceaselessly happened and these mostly lead to serious disasters associated with public criticism. Recently, the accidents under construction due to incomplete or faulty design has repeatedly occurred such as the overturned girder accident in Jangnam Bridge, the submerged incident in Noryangjin and the slab collapse in Banghwa Bridge. In order to prevent such accidents due to the faulty design in temporary structures, it's important to set up the solid construction management system which allows the reasonable design change if necessary. In this regard, this study provides the basic data for the reasonable design change in temporary structures by conducting a question investigation to the construction, design, and supervising companies. From the survey results, the kind and range of the temporary structures which should considers the design change were suggested by the deduced reasonable processes.

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool (얕은 감세지내의 극한 세굴잠재능 예측)

  • 손광익
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.123-131
    • /
    • 1994
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threatens the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new scour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variale, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on a movable bed made of large spherical particles.

  • PDF

The Study of the Beach Change into Structures (인공 구조물에 의한 해빈변형 연구)

  • Kim, Hyo Seob;Jung, Byung Soon;Oh, Byung Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1445-1449
    • /
    • 2004
  • Even though there can be a relative long-term or short-term change of their size in natural beaches due to various changes of sea condition such as the location, weather condition (wind and rain) and sea water flow, the budget of deposits in a specific area is generally regarded to be in a condition of equilibrium in terms of technology. However, as coasts are developed by many different kinds of ways (such as construction of sea walls and estuarine, dredging for gathering the aggregate and shore protection construction for establishing a structure) and sources of silt and gravel from rivers are decreased in balanced beaches, the beaches are in a serious danger of lack of sand and sand sources which are one of the maul elements to consist of them. Many swimming beaches in East Sea are directly exposed by waves generated and transmitted from outer seas. On the other hand, the Song-Do sandy beach which is this study's target area has a great condition for beach development because it locates the deepest place that is relatively shallow in Young-Il Man and there is big energy decrease given to waves from outer seas while the waves are reaching the Song-Do beach. Nevertheless, it is considered that artificial condition changes such as dredging for site extension by POSCO, getting straight of Hyoung-San Gang river flow and extension of Po-Hang harbor caused the sand loss of the beach. Therefore, some recovery plans of Song-Do sandy beach will be presented in this study and they will be compared and examined each other by numerical modeling experiment. After that, the best plan will be recommended.

  • PDF

Finite Element Dynamic Analysis of a Vertical Pile by Wave and Tidal Current (파도와 조류에 의한 수직 파일의 유한요소 동적거동 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.183-192
    • /
    • 2004
  • New dynamic analysis procedures lot the vertically drilled sea water pile are suggested and demonstrated by the typical design Problem. Pile structure submerged in the sea water as well as forces by the ocean waves and tidal currents are modeled and formulated by finite element method. To obtain wave forces for the finite element equation, Airy's wave theory is tested and selected among others. Lateral lifting forces induced by the vortex shedding of current flow is simply based on the harmonic function with the Strouhal frequency and lifting coefficient. Natural frequencies and frequency responses for the pile are calculated by NASTRAN using the results of the formulation. Dynamic displacement and stress results obtained by these procedures are shown to be applicable to predict the dynamic behaviors of the ocean pile by the wave and lifting forces as a preliminary design analysis.

Distribution of Welding Residual Stresses in T-joint Weld with Root Gap (루트부 갭이 있는 양면 필릿용접 이음부의 용접잔류응력 분포)

  • H.S. Bang;S.H. Kim;Y.P. Kim;C.W. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.81-88
    • /
    • 2002
  • The root joint in the welding structures are apt to failure by the stress concentration which is occurred by the external force. Therefore, in the safety and reliability of structure, the complete penetration joint welding which are obtained by the groove welding with edge preparation is generally required. Nevertheless, fillet T-joint welding without edge preparation is often carried out in the fields to reduce working time and consumption of welding electrode, however, this process is likely to produce inadequate joint penetration such as root gap. In this paper, the focus of research is to investigate distribution of welding residual stresses in the plate(or flange) and web of T-joint weld, and especially in the near of root gap notch that is due to incomplete joint penetration. For the analysis, we have chosen model of T-joint weld in the cases of single and multi-pass welding with submerged arc welding and analyzed model by using finite element programs considering the heat conduction and thermal elasto-plastic theory.

A Study on Correlation Between Accelerated Corrosion Test and Long-term Exposure Test According to the Temperature Condition (온도조건에 따른 철근부식 촉진시험과 장기폭로시험의 상관성에 관한 연구)

  • Park, Sang-Soon;So, Byung-Tak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 2016
  • In this study, to clarify the differences rebar corrosion beginning, through the actual corrosion accelerated test in corrosion time and laboratory test chamber of the structure of the marine environment results in both environments, it is an object of correlation coefficient derived. The accelerated corrosion test was carried out by two case, I.e., one is $20^{\circ}C$ of low temperaure codition(case 1), and the other is $65^{\circ}C$ of high temperaute codition(case 2). Whether corroions occurs, it was measures using half-cell potential method. The results indicated that case 2 is to acclerate the corrosion of rebar about 1.7~1.8 times as compared with case 1, thenthe corrosion of rebar embadded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between acclerated corrosion test and long-term exposure test, case 1 is 2.45 to 2.94, and case 2 is 4.37~4.99.

Hydroelastic Vibration Analysis of Three Dimensional Submerged Structure (3차원 접수구조물의 유체탄성 진동해석)

  • 정기태;강호승;김영복
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-27
    • /
    • 1991
  • 본 논문에서는 유체-구조 상호작용해석의 일종의 3차원 접수구조물의 진동해석을 효과적으로 수행하기 위한 해석방법을 제시하기 위하여 동적재해석기법을 검토하였다. 접수구조물의 유한구조 상호작용해석 결과는 구조진동의 관심 주파수역에서는 3차원 연성 부가수질량으로 표현되는 관성력으로 나타난다. 따라서 구조질량행렬에 부가수질량 행렬이 더해져서 전체 관성력으로 표현된다. 이 부가수질량을 추가질량으로 보고 재해석기법을 응용하는 방법을 수치실험을 통해 검증하였다. 이 때 재해석기법이 갖추어야 할 조건은 원구조의 질량과 거의 같은 정도의 질량이 추가되고 또한 완전 연성질량이 추가된 경우에도 정확한 해를 주어야 한다는 것이다. 이를 검증하기 위해 직접재해석기법과 섭동법을 이용한 재해석기법으로 4질량 스프링지지구조에 대한 해석을 수행한 결과 직접재해석기법의 응용이 적합함을 쉽게 입증할 수 있었다. 접수구조물의 예로는 3차원 잠수주상체에 대해 접수진동해석을 수행하였으며 그 결과 선체진동해석에 전통적으로 이용되고 있는 2차원 부가수질량과 3차원 수정계수를 사용한 기준차수법에서는 수지모드와 수평-비틔 연성모드와 같이 서로 독립적인 모드에 대해서는 따로 진동해석을 수행해 주어야 하는 단점이 발견되었다. 이 단점을 보완한 각 모드의 3차원 수정계수행렬을 이용한 재해석기법을 도입하여 모드에 상관없이 동시에 해를 구할 수 있었다. 그러나, 이 방법은 3차원 수정계수가 구해져 있는 경우에 한해서만 적용가능하며 실제 선체진동의 경우에는 10Hz 미만의 저차 주선체 진동에 한해서만 적용가능한 방법이다. 고차의 진도옴드에는 3차원 수정계수를 구할 수 없기 때문에 유체-구조 상호작용 해석결과로부터 얻은 3차원 연성 부가수질량을 이용하게 되며 이 때 이 행렬이 접수구조 표면의 전 자유도와 연성되어 있기 때문에 방대한 방정식을 푸어야 하지만 직접재해석기법을 적용함으로써 정확한 해를 구할 수 있었다. 또한 3차원 부가수질량을 이용한 직접재해석기법은 종래의 2차원 부가수질량과 3차원 수정계수를 이용한 방법에 비해 해석시간 면에서도 전혀 불리한 점이 없는 경제적 방법임이 밝혀졌다. 앞으로 Slamming 혹은 수중폭파 등의 충격하중에 의한 천이 구조응답 해석을 위한 효과적인 방법에 대해서도 연구결과를 발표할 계획이다.

  • PDF