• 제목/요약/키워드: Submerged dual porous horizontal plate

검색결과 2건 처리시간 0.017초

Effects of reverse waves on the hydrodynamic pressure acting on a dual porous horizontal plate

  • Kweon, Hyuck-Min;Choi, Young-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.60-73
    • /
    • 2014
  • The seaward reverse wave, occurring on the submerged dual porous horizontal plate, can contribute to the reduction of the transmitted wave as it reflects the propagating wave. However, the collision between the propagating and seaward reverse waves increases the water level and acts as a weight on the horizontal plate. This study investigated the characteristics of the wave pressure created by the seaward reverse wave through the analysis of experimental data. The analysis confirmed the following results: 1) the time series of the wave pressure showed reverse phase phenomena due to the collision, and the wave pressures acted simultaneously on both upper and lower surfaces of the horizontal plate; 2) the horizontal plate became repeatedly compressed and tensile before and after the occurrence of the seaward reverse wave; and 3) the seaward reverse wave created the total wave pressure to the maximum towards the direction of gravity, primarily on the upper plate. It was also confirmed that the wave distributions showed a similar trend to the wave steepness. Such outcome of the analysis will provide basic information to the structural analysis of the horizontal plate as a wave dissipater of the steel-type breakwater (STB).

Experimental study on the method of estimating the vertical design wave force acting on a submerged dual horizontal plate

  • Kweon, Hyuck-Min;Oh, Sang-Ho;Choi, Young-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.569-579
    • /
    • 2013
  • A steel-type breakwater that uses a submerged dual horizontal porous plate was originally proposed by Kweon et al. (2005), and its hydrodynamic characteristics and design methodology were investigated in a series of subsequent researches. In particular, Kweon et al. (2011) proposed a method of estimating the vertical uplift force that acts on the horizontal plate, applicable to the design of the pile uplift drag force. However, the difference between the method proposed by Kweon et al. (2011), and the wave force measured at a different time without a phase difference, have not yet been clearly analyzed. In this study, such difference according to the method of estimating the wave force was analyzed, by measuring the wave pressure acting on a breakwater model. The hydraulic model test was conducted in a two-dimensional wave flume of 60.0 m length, 1.5 m height and 1.0 m width. The steepness range of the selected waves is 0.01~0.03, with regular and random signals. 20 pressure gauges were used for the measurement. The analysis results showed that the wave force estimate in the method of Kweon et al. (2011) was smaller than the wave force calculated from the maximum pressure at individual points, under a random wave action. Meanwhile, the method of Goda (1974) that was applied to the horizontal plate produced a smaller wave force, than the method of Kweon et al. (2011). The method of Kweon (2011) was already verified in the real sea test of Kweon et al. (2012), where the safety factor of the pile uplift force was found to be greater than 2.0. Based on these results, it was concluded that the method of estimating the wave force by Kweon et al. (2011) can be satisfactorily used for estimating the uplift force of a pile.