• Title/Summary/Keyword: Subjective Discomfort Ratings

Search Result 17, Processing Time 0.02 seconds

Investigation on Perceived Discomfort Depending on External Load, Upper Limb Postures and their Duration (외부 부하, 상지 자세와 지속 시간에 따른 지각 불편도)

  • Kee, Dohyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.2
    • /
    • pp.76-83
    • /
    • 2004
  • This study aimed to empirically investigate perceived discomfort depending upon external load, upper limb postures and their holding time. Discomfort was obtained through an experiment, in which external load, wrist flexion/extension, elbow flexion, shoulder flexion and adduction/abduction were used as experimental variables. The subjects were instructed to hold given postures for 60s and to rate their subjective discomfort scores at 5s, 20s, 40s and 60s by using the free modulus method of magnitude estimation. The results showed that while only external load and elbow flexion were statistically significant at the holding time of 5s at ${\alpha}=0.05$ or 0.10, external load and upper limb postures excluding shoulder adduction/abduction significantly affected discomfort ratings at 20s, 40s and 60s at ${\alpha}=0.01$ or 0.05. Discomfort scores were also significantly different between four posture holding times at ${\alpha}=0.01$. The effects of external load and holding time were much larger than those of upper limb postures. Based on the results of this study, it is recommended that external load and holding time as well as working postures betaken into consideration to precisely quantify postural load in industry.

Psychophysical Discomfort Evaluation of Complex Trunk Postures (복합적인 몸통 자세의 심물리학적 불편도 평가)

  • Lee, In-Seok;Ryu, Hyung-Gon;Chung, Min-K.;Kee, Do-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.4
    • /
    • pp.413-423
    • /
    • 2001
  • Low back disorders (LBDs) are one of the most common and costly work-related musculoskeletal disorders. One of the major possible risk factors of LBDs is to work with static and awkward trunk postures, especially in a complex trunk posture involving flexion, twisting and lateral bending simultaneously. This study is to examine the effect of complex trunk postures on the postural stresses using a psychophysical method. Twelve healthy male students participated in an experiment, in which 29 different trunk postures were evaluated using the magnitude estimation method. The results showed that subjective discomfort significantly increased as the levels of trunk flexion, lateral bending and rotation increased. Significant interaction effects were found between rotation and lateral bending or flexion when the severe lateral bending or rotation were assumed, indicating that simultaneous occurrence of trunk flexion, lateral bending and rotation increases discomfort ratings synergistically. A postural workload evaluation scheme of trunk postures was proposed based on the angular deviation levels from the neutral position. Each trunk posture was assigned numerical stress index depending upon its discomfort rating, which was defined as the ratio of discomfort of a posture to that of its neutral posture. Four qualitative action categories for the stress index were also provided in order to enable practitioners to apply corrective actions appropriately. The proposed scheme is expected to be applied to several field areas for evaluating trunk postural stresses.

  • PDF

Characteristics of Elderly Drivers' Reach Motion to Seat Belt (고령운전자 시트 벨트 뻗침 거동 특성 분석)

  • Choi, Woo-Jin;Kwak, Seung-Ho;Choi, Hyung-Yun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • The purpose of this study is to understand motion characteristics of older drivers during reaching seat belt compared to young drivers and to provide design guidelines in order to reduce discomfort for the elderly. The whole body kinematics of each subject was captured using 12-camera motion analysis system. Subjective ratings on discomfort levels were obtained simultaneously using a questionnaire. This paper first presents the result of motion characteristics of elderly drivers' reach motion to seat belt. Compared to young drivers, older drivers performed seat belt reach motions less efficiently and moved slower due to mostly the movement error. Older drivers also made use of reduced joint range of motion in cervical left rotation, lumbar left rotation and right shoulder adduction, which can be explained by their reduced active range of motions (AROMs). To compensate for their reduced joint range of motion, older drivers rotated pelvis more.

Optimal Layout of Vehicle Pedals Depending on the Types and Positions of Vehicle Pedals (페달 종류 및 위치에 따른 최적 페달 레이아웃 설정)

  • Choi, Jeong-Pil;Jung, Eui-S.;Jeong, Seong-Wook;Jeong, Seong-Wook
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to propose an optimal layout for the accelerator and brake pedals in sedan and SUV, and also to compare the pendant-type pedal with organ-type pedal. 12 male subjects participated in the experiment, the subjects were divided into 3 groups according to height percentile(under 50%ile, 50%ile to 75%ile, over 75%ile). Independent variables were seat height (H30), X and Y coordinates of the center of accelerator and brake pedals and the x and y relative distance between two pedals. Dependent variable was subjective ratings for lower body discomfort. The response surface methodology using a central composite design was employed to develop a prediction model for lower body discomfort of each pedal. It is noticeable that the lateral position of the accelerator in all groups was not statistically significant. The optimal locations of both pedals were found to be distinct according to the percentile of subjects. X distance from accelerator to brake of both-type pedals is similar. But Y distance from accelerator to brake of organ-type is less about 2-3cm than that of pedant-type.

Development and Assessment of Shovel Applying Foothold

  • Lim, Cheolmin;Lee, Kyungsuk;Kim, Kyungran;Kim, Hyocher;Seo, Mintae;Kim, Seongwoo;Chae, Hyeseon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Objective: The aim of this study is to develop a farming shovel to reduce workload, which helps farmers lower the risk of musculoskeletal disease. Background: Most of work using farming tools including shovels requires repetitive works and awkward postures on body parts, and it could possibly cause work-related musculoskeletal disorders. It is necessary to develop and distribute farm equipment and tools in order to reduce physical workload. Method: To improve the most uncomfortable task perceived by ten farmers during the work with a shovel, the improved shovel was designed and made as a prototype for experiment for the comparison of the existing and improved shovels. Twenty males were recruited for this experiment, and muscle activity (%MVC) of six body parts and subjective discomfort ratings by body parts while working with a shovel were measured. A paired t-test was performed to compare physical workload between the existing shovel and the developed one. Results: A shovel applying foothold tied between shaft and blade was designed, which can help workers reduce repetitive bending of back and pressures for upper limbs while digging soil. According to compared evaluation of the developed shovel and the existing shovel, the developed shovel's %MVCs in all experimental muscles were significantly lower than those of the existing shovel. The developed shovel showed the biggest drop in perceived subjective discomfort rating of back, followed by arm and neck, compared to the existing shovel. Conclusion: It was confirmed that attaching a foothold to a shovel was an effective way of reducing workload in back and upper limbs during digging. Application: In the near future, if we put the prototype of developed shovel to practical use after making up for defects, it will help farm work environment be healthier and safer.

Determination of Proper Monitor Height based on the Musculoskeletal Load and Preference during VDT Monitoring Tasks (VDT 모니터링 작업에서 근골격계 부담도 및 선호도에 근거한 모니터 높이 결정)

  • Lee, Joongho;Song, Young Woong;Na, Seokhee;Chung, Min Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.236-241
    • /
    • 2006
  • Monitor height is one of the key factors in the VDT workstation design. Most of the previous studies have focused on traditional VDT workplace where the operators performed data entry or word processing tasks using single monitor. This study aimed to suggest proper monitor height when the main task was monitoring information from different number of information sources. Twelve male students participated in three experiments: single information source (one monitor), two information sources (one monitor and one CCTV), and three information sources (one monitor, one CCTV and a window). Subjects performed monitoring tasks for 10 minutes with 3 different monitor center heights : 89.0 cm (Low), 111.3 cm (Middle), and 124.8 cm (High). Surface EMG signals of five neck muscles, subjective discomfort ratings, preference, and working postures were recorded. Results indicated that the middle height was proper for one monitor condition, but the low monitor height was recommended for more than two information sources.

Development of an Ergonomic Checklist for the Investigation of Work-related Lower Limb Disorders in Farming - ALLA: Agricultural Lower-Limb Assessment (농작업에서 발생하는 하지자세의 근골격계 질환 위험도 평가를 위한 인간공학적 평가도구 개발)

  • Kong, Yong-Ku;Han, Jun-Goo;Kim, Dae-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.933-942
    • /
    • 2010
  • Objective: To develop an ergonomic evaluation tool which can be apply to assess the lower-limb postures associated with farming tasks. Background: In general, most of existing ergonomic assessment tools was developed to investigate the work-related musculoskeletal disorders of the upper-limb postures in manufacturing industry. Methods: As the first step of development of the evaluation tool, 13 lower-limb postures that were commonly observed in farming task were investigated by the subjective discomfort ratings, heart rates, and muscle activities. And then, an ergonomic evaluation tool for the lower-limb postures was developed based on results of the first experiment. Lastly, the ergonomic checklist which was developed in the current study was compared with other existing ergonomic assessment tools. Results: Based on the results of comparisons between a newly developed assessment tool and other existing assessment tools, it was found that a newly developed tool can perceive more sensitively for the various lower-limb postures than other assessment tools. Conclusions: Lower-limb posture assessment tool which can evaluate and assess risks of lower-limb WMSDs which were prevalent in farming tasks more easily and accurately was developed in this study. The lower-limb assessment tool can also be utilized to prevent WMSDs related with lower-limbs as well as improve working environments.