• Title/Summary/Keyword: Subgrain Size

Search Result 9, Processing Time 0.021 seconds

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온 예변형에 의한 크리프 거동)

  • 박인덕;남기우;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strained specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steen which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.262-262
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

  • PDF

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온예변형에 의한 크리프 거동)

  • Park, In-Duck;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strianed specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steel which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

  • PDF

Microstructures and Hardness of CO2 Laser Welds in 409L Ferritic Stainless Steel (409L 페라이트계 스테인리스강 CO2레이저 용접부의 미세조직과 경도)

  • Kong, Jong Pan;Park, Tae Jun;Na, Hye Sung;Uhm, Sang Ho;Kim, Jeong Kil;Woo, In Su;Lee, Jong Sub;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.297-304
    • /
    • 2010
  • The microstructure and hardness of $CO_2$ laser welds were investigated in the Ti-stabilized ferritic stainless steel 409L. The observed specimen was welded in a fully penetrated condition in which the power was 5 kW and the welding speed 5 m/min. The grain structure near the bond line of the laser welds was produced by epitaxial growth. The grain size was the largest in the fusion zone, and HAZ showed nearly the same grain size as that of the base metal. The HAZ microstructure consisted of subgrains and precipitates that were less than 100 nm in size and that were located along the subgrain boundaries. On the other hand, the hardness was the highest in the fusion zone due to the large amount of small precipitates present. These were composed of TiN, Ti(C,N) and $TiO_2$+Ti(C,N). The hardness decreased continuously from the fusion zone of the base metal. The HAZ hardness was slightly greater than that of the base metal due to the existence of subgrains and precipitates in the subgrain boundary.

The mechanism of the formation of an anodic oxide layer on the aluminium (알루미늄 양극산화피막의 생성기구)

  • Park, Soon;Kang, Tak
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 1979
  • The structure of anodic aluminium oxide films formed in 2% oxalic asid at constant temperature was studied by the oid of the transmission and replica electron microscopy. Far the initial stage of oxidations, it is observed that pores are initiated from lattice defects as subgrain boundaries, and then spread radially. Some pores merge each other and the others cease to grow until the current density reaches to the steady state. The pore diameter and the cell size are proportional to the anodizing voltages, and it is considered that the pore initiation and growth are largely controlled by the field - assisted oxide dissolution.

  • PDF

THE EFFECT OF SUBSTRATE TEMPERATURE ON GRAIN STRUCTURES AND MAGNETIC PROPERTIES OF Pd(Pt/Co/Pt) MODULATED MULTILAYERS

  • Xiao, Ying;Xu, Jun-Hao;Wittborn, Jesper;Yu, Seong-Cho;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.716-719
    • /
    • 1995
  • Pd/(Pt/Co/Pt) modulated multilayer films have been deposited on various substrates with Pd/Pt buffer layers. Films grown at different temperatures have very distinct magnetic properties and surface microstructures. Atomic force(AFM) and scanning tunneling (STM) microscopies studies of these films reveal that films deposited at room temperature have small grain structures with an average grain size of about $140\;{\AA}$. However, much larger grains of about $1200\;{\AA}$ in size are observed in the films grown on buffer layers which were deposited at $500^{\circ}C$. These large grains are found to actually consist of smaller grains of about $170{\AA}$ in diameter. SQUID magnetic and Kerr hysteresis loop measurements indicate that multilayer films with large grains exhibit high magnetic coercivities of around 5 kOe. A subgrain growth model is proposed to understand the observed grain structures in the multilayers.

  • PDF

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.