• Title/Summary/Keyword: Subchannel Flow

Search Result 73, Processing Time 0.029 seconds

CFD Simulation of Axial Turbulent Flow in a Triangular Rod Bundle

  • In W.K.;Chun T. H.;Myong H. K;Ko K
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.71-73
    • /
    • 2003
  • A CFD analysis has been made for fully developed turbulent flows in a triangular bare rod bundle with pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence­driven secondary flow in the triangular subchannel. The nonlinear quadratic $\kappa-\omega$ models by Speziale and Myong-Kasagi predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic $\kappa-\omega$ models by Shih et al. and Craft et al. showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model appeared to overpredict the turbulence anisotropy in the rod bundle.

  • PDF

A Study of Flow Pattern in $5{\times}5$ Rod Bundle by the Spacer Grid Mixing Vane (지지격자 혼합날개에 의한 $5{\times}$ 5 봉다발에서 유동 패턴)

  • Choo, Yeon-Jun;Chang, Seok-Kyu;Kim, Bok-Deok;Moon, Sang-Ki;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2873-2878
    • /
    • 2007
  • The mixing vanes attached to the spacer grid of rod bundles are used to improve the heat transfer in heat exchanger devices by controlling the characteristics of the flow structures and turbulence. In this study, velocity patterns induced by two types of mixing vane(split and swirl vane) are measured by the PIV technique to better understand how to effect on the cross and secondary vortex flow patterns in $5{\times}$ rod bundle simulating the fuel assembly of the nuclear reactor. A successful measurement of the lateral velocity patterns was conducted using a specially designed beam sheet generator and experimental loop at KAERI. As the result, we found that for the cross flow between subchannels, the split vane is more effective than the swirl vane, while for the secondary vortex flow in each subchannel, the swirl vane's one is larger and longer than split vane's one.

  • PDF

Experiment of Turbulent Heat Transfer Performance Enhancement in Rod Bundle Subchannel by the Large Scale Vortex Flow (대형 2차 와류에 의한 봉다발 부수로에서의 난류 열전달 향상에 관한 실험적 연구)

  • Seo, Kwi-Hyun;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1592-1597
    • /
    • 2004
  • Experimental studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel rod bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Experimental studies were carried out at Reynolds Number 60,000 with hydraulic condition. Normal variations of mean velocity and turbulent intensity in the rod bundle subchannel were measured by the 2-color LDV measurement system. The turbulence generated by split mixing vanes has small length scales so that they maintain only about 10DH after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up $25D_{H}$ after the spacer grid.

  • PDF

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

A validation study of the SLTHEN code for hexagonal assemblies of wire-wrapped pins using liquid metal heating experiments

  • Sun Rock Choi;Junkyu Han;Huee-Youl Ye;Jonggan Hong;Won Sik Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1125-1134
    • /
    • 2024
  • This paper presents a validation study of the subchannel analysis code SLTHEN used for the core thermal-hydraulic design of the Prototype Gen-IV sodium-cooled fast reactor (PGSFR). To assess the performance of the ENERGY model of SLTHEN, four liquid metal heating experiments conducted by ORNL, WARD, and KIT with hexagonal assemblies of wire-wrapped rod bundles were analyzed. These experiments were performed with 19-and 61-pin bundles and varying power distributions of axial and radial peaking factors up to 1.4 and 3.0, respectively. The coolant subchannel temperatures measured at different axial locations were compared with the SLTHEN predictions with the Novendstern, Chiu-Rohsenow-Todreas (CRT), and Cheng-Todreas (CT) correlations for flow split and mixing in wire-wrapped pin bundles. The results showed that the SLTHEN predicts the measured subchannel temperatures reasonably well with root-mean-square errors of ~10 % and maximum errors of ~20 %. It was also observed that the CRT and CT correlations consistently outperform the Novendstern correlation.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.