• Title/Summary/Keyword: Subchannel Analysis

Search Result 94, Processing Time 0.025 seconds

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

NUPEC BFBT SUBCHANNEL VOID DISTRIBUTION ANALYSIS USING THE MATRA AND MARS CODES

  • Hwang, Dae-Hyun;Jeong, Jae-Jun;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.295-306
    • /
    • 2009
  • The subchannel grade void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility were evaluated with the subchannel analysis code MATRA and the system code MARS. Fifteen test series from five different test bundles were selected for an analysis of the steady-state subchannel void distributions. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5% to 25%. The results of the transient calculations were also similar and were highly feasible. However, the computational aspects of the two codes were clearly different.

Development of a Subchannel Analysis Code MATRA Applicable to PWRs and ALWRs

  • Yoo, Yeon-Jong;Hwang, Dae-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.314-327
    • /
    • 1999
  • A subchannel analysis code MATRA applicable to PWRs and ALWRs has been developed to be run on an IBM PC or HP WS based on the existing CDC CYBER mainframe version of COBRA-Rf-1. This MATRA code is a thermal-hydraulic analysis code based on the subchannel approach for calculating the enthalpy and How distribution in fuel assemblies and reactor cores for both steady-state and transient conditions. HATRA has been provided with an improved structure, various functions, and models to give more convenient user environment and to enhance the code accuracy. Among them, the pressure drop model has been improved to be applied to non-square-lattice rod arrays, and the models for the lateral transport between adjacent subchannels have been improved to enhance the accuracy in predicting two-phase flow phenomena. The predictions of MATRA were compared with the experimental data on the flow and enthalpy distribution in some sample rod-bundle cases to evaluate the performance of MATRA. All the results revealed that the predictions of MATRA were better than those of COBRA-IV-I.

  • PDF

Performance Analysis of Resource Allocation Scheme for WiBro Portable Internet System (WiBro 휴대 인터넷 시스템을 위한 자원 할당 알고리듬 비교 분석)

  • Yeou Hye-jin;Yang Joo-young;Kim Jeong-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.455-464
    • /
    • 2005
  • In this paper, we implement resource allocation algorithm based on the WiBro system which including OFDMA, TDD, and we propose the algorithm in order to increase bandwidth efficiency. In this algorithm, data is allocated from the subchannel which has large channel gain to the subchannel which has small channel gain with maximum modulation order. The moment total power is more than available power, the modulation order of the latest subchannel is adjusted. The problem of decreasing of throughput in large channel attenuation environment is solved by allocating additional power. Still, this algorithm has large bandwidth efficiency.

Performance analysis of OFDM on the multi-path fading channel (다경로 페이딩 채널에서 OFDM의 성능분석)

  • 정영모;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2923-2931
    • /
    • 1996
  • In this paper, the symbol error probability for orthogonal frequency division multiplexing (OFDM) in the multipath fading environment is obtained analytically. In the analysis, OFDM signals with and without the guard interval are considered, and the two-ray fading model is used for the multi-path fading channel. From the analysis results, it is found that the adjacent subchannel interfernce increases the symbol error rate when the guard interval is not employed or shorter than the length of the delay. It is also shown that the adjacent subchannel interference is a Gaussian random variable and its variance depends on the subchannel location and the number of subchannels. Finally, it is found that the variance of the subchannel interference also increases as the power of the signal increases for the OFDM with insufficient guard interval, yieldin an irreducible error at high signal to noise ratio.

  • PDF

Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-pin Rod Bundle for a Sodium-Cooled Fast Reactor

  • Chang, Seok-Kyu;Euh, Dong-Jin;Choi, Hae Seob;Kim, Hyungmo;Choi, Sun Rock;Lee, Hyeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.376-385
    • /
    • 2016
  • A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and $60^{\circ}C$ (equivalent to Re ~ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

Numerical Determination of Lateral Loss Coefficients for Subchannel Analysis in Nuclear Fuel Bundles (핵 연료집합체 부수로 해석을 위한 횡 방향 압력손실계수의 수치적 결정)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.491-502
    • /
    • 1995
  • In accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number k-$\varepsilon$ turbulence model has been adopted in too adjacent subchannels with cross-flow. The secondary flow is accurately estimated by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity Held in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral How velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  • PDF

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

CFD Application to Development of Flow Mixing Vane in a Nuclear Fuel Assembly (핵연료다발 유동혼합 날개 개발을 위한 CFD 응용)

  • In, W.K.;Oh, D.S.;Chun, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.482-487
    • /
    • 2001
  • A CFD study was conducted to evaluate the nuclear fuel assembly coolant mixing that is promoted by the flow-mixing vanes on the grid spacer. Four mixing vanes (split vane, swirl vane, twisted vane, hybrid vane) were chosen in this study. A single subchannel of one grid span is modeled using the flow symmetry. The three mixing vanes other than swirl vane generate a large crossflow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The swirl vane induces a circular swirling flow in the subchannel and a negligible crossflow. The split vane and the twisted vane were predicted to result in relatively larger pressure drop across the grid spacer. Since the average turbulent kinetic energy in the subchannel rapidly decreases to a fully developed level downstream of the spacer, turbulent mixing caused by the mixing vanes appears to be not as effective as swirling flow mixing in the subchannel. In summary, the CFD analysis represented the overall characteristics of coolant mixing well in a nuclear fuel assembly with the flow mixing vanes on the grid spacer. The CFD study is therefore quite useful for the development of an advanced flow-mixing vane.

  • PDF