• Title/Summary/Keyword: Subaru

Search Result 114, Processing Time 0.023 seconds

Subaru-EAO international partnership

  • Yoshida, Michitoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.59.1-59.1
    • /
    • 2017
  • The Subaru telescope is a 8.2m optical-infrared telescope operated by National Astronomical Observatory of Japan since 2000. Its wide field observation capability with good image quality makes the telescope one of the best astronomical facilities. We Subaru Telescope is seeking for international partners for the telescope operation to share science observations, future strategy and development. In the course of this effort, EAO and us exchanged a letter of intent on the planning of collaboration on the Subaru operation in this June. I introduce the contents of the Subaru-EAO LOI and the basic concepts of the Subaru international partnership in addition to a brief report of the current status of the observatory.

  • PDF

Subaru Strategy for 2020's

  • Arimoto, Nobuo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.27.2-27.2
    • /
    • 2015
  • Strategic plan of Subaru science and operation will be introduced. Currently, Subaru has wide variety of instruments, conducts only classical observations, with less than 5 nights allocation for each proposal. Near future, Subaru will emphasize on surveys, introduce queue mode observations, reduce the number of instruments, and concentrate on large size programs. Large surveys are called Subaru Strategic Programs (SSPs). HSC-SSP is on-going (300 nights for 5 years), PFS-SSP will start at around 2020 (360 nights for 5 years), and IRD-SSP from 2016 (TBD). HSC science includes 1) cosmology with gravitational lensing, 2) lensing studies of galaxies and clusters, 3) photometric redshifts, 4) the Solar system, 5) the Milky Way and the Local Group, 6) AGN/quasars, 7) transients, 8) galaxies at low/high redshifts, and 9) clusters of galaxies. PFS science includes 1) cosmology, 2) galaxy & AGN, and 3) galactic archaeology. Subaru is planning the third pillar instrument, so called ULTIMATE-Subaru, which is the GLAO optical-NIR wide field camera & multi-IFU spectrograph for finding galaxies at ultra high redshift (z>10). Finally the strategy from Subaru to TMT will be presented. Subaru will conduct four major SSPs (HSC, PFS, IRD, ULTIMATE-Subaru) in coming decade to provide targets to TMT. HSC performs wide field surveys to reveal the distribution of dark matter in the Universe. IRD surveys Earth-like young planets to discover ~20 Earth-like habitable planets. PFS studies the expanding Universe to provide a few million emission line galaxies to TMT.

  • PDF

Possible framework for East Asia Observatory (EAO) and Subaru partnership

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.57.3-57.3
    • /
    • 2019
  • Recently, there have been discussions among national observatories in East Asia about the possibility of EAO and the Subaru observatory forming a partnership. The official EAO-Subaru partnership can make the powerful wide-field observation capabilities of Subaru available to Korean astronomers through EAO, and also can serve as an excellent platform to gather astronomers in East Asia together for flourishing regional collaboration activities. A working group has been formed to outline the framework of the EAO-Subaru partnership, and the working group report has been prepared. In this talk, I will explain the proposed partnership framework in the working group report. Inputs are very welcome from KAS members about the proposed framework.

  • PDF

THE LATEST RESULTS FROM SUBARU TELESCOPE

  • HAYASHI MASAHIKO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.73-75
    • /
    • 2005
  • The latest scientific highlights obtained with the Subaru telescope are given together with its current status and on-going instrumentation. We have been successfully operating the telescope and 8 observatory instruments (including an adaptive optics system) since January 1999, when the first light was accomplished. Open-use of Subaru began in December 2000. Subaru has a unique capability of its prime focus among other 8-10 meter class telescopes and has an excellent imaging performance as a result of its sophisticated active optics combined with the high stability of the sky at Mauna Kea. Scientific highlights are given on the discoveries of the most distant galaxies, spiral structure on a protoplanetary disk around AB Aur, and planetesimal belts in the debris disk around $\beta$ Pic. Brief summaries are given for three new instruments: the Multi-Object Infrared Camera and Spectrograph (MOIRCS), 188 element adaptive optics system, and Fiber Multi-Object Spectrograph (FMOS)

JAPAN 8M TELESCOPE: SUBARU PROJECT

  • IYE MASANORI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.371-374
    • /
    • 1996
  • An updated project status review of the Japan 8m telescope, Subaru, scheduled for its first light in the second quater of 1998 atop Mauna Kea is given.

  • PDF

LARGE INTERNATIONAL PROJECTS AT THE NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN

  • HAYASHI, MASAHIKO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.617-620
    • /
    • 2015
  • This paper presents an overview of the large international projects in which the National Astronomical Observatory of Japan is involved, namely, the Subaru Telescope, Atacama Large Millimeter/submillimeter Array, and the Thirty Meter Telescope. The last section provides a brief historical view of the international collaboration in East Asia regions over the last 20 years.

THE HST COSMOS PROJECT: CONTRIBUTION FROM THE SUBARU TELESCOPE

  • TANIGUCHI YOSHIAKI;SCOVILLE N. Z.;SANDERS D. B.;MOBASHER B.;AUSSEL H.;CAPAK P.;AJIKI M.;MURAYAMA T.;MIYAZAK S.;KOMIYAMA Y.;SHIOYA Y.;NAGAO T.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.187-190
    • /
    • 2005
  • The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project. The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in I(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B, V, r', i', and z') using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.

HIGH ANGULAR RESOLUTION [Fe II] λ1.644 μ SPECTROSCOPY OF YSOS WITH SUBARU TELESCOPE

  • PYO TAE-SOO;HAYASHI MASAHIKO;NAOTO KOBAYASHI;TERADA HIROSHI;TOKUNAGA ALAN T.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.249-252
    • /
    • 2005
  • We present results of the velocity-resolved spectroscopy of the [Fe II] $\lambda$1.644${\mu}m$ emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.apos;16 ${\~}$ 0.apos;5 arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.apos;1 = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 km $s^{-l}$) and the low velocity component (LVC: 50 - 150 km $s^{-l}$), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 $\mu$ spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.