• Title/Summary/Keyword: Sub-microscopic representation

Search Result 2, Processing Time 0.019 seconds

Lack of Sub-microscopic Representation Ability of 12th Grade Science Students in Various Acid and Base Problem Solving Processes (다양한 산·염기 문제해결과정에서 드러난 고등학교 3학년 이과 학생들의 준미시적 표상화 능력의 결여)

  • Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • The purpose of this study was to identify the problems faced by students in sub-microscopic representation of acid-base reactions. Herein, we selected 30 students of 12th grade science classes, who had studied various acid-base models. In order to investigate the sub-microscopic representation ability of the students, we developed nine items related to various contexts, such as one type of solute and solvent, two types of solutes and solvent, cases with water as solvent or with nonaqueous solvents. For all items, we consistently observed lack of concept of chemical change. In context of aqueous and nonaqueous solutions, the frequency of lack of concept of chemical bonding was high if ammonia was the solute or solvent. Moreover, the frequency of lack of concept related to the degree of electrolytic dissociation was high. Therefore, chemistry teachers should understand that students' ability to sub-microscopic representation of acid-base reactions can be enhanced by analyzing the difficulties faced by the students in solving diverse acid-base problems.

The Effect of Classes Using the Scratch for Quasi-Microscopic Representation Approaches in Dynamic Equilibrium Learning (동적 평형 학습에서 준미시적 표상 접근을 위한 스크래치 활용 수업의 효과)

  • Seongjae Lee;Sungki Kim;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.241-252
    • /
    • 2023
  • This study aims to increase students' understanding of equilibrium, one of the many concepts in chemistry that students find difficult. Dynamic equilibrium must be dealt with at the sub-microscopic level where the real and the representation overlap in order to microscopically understand the constant motion and interaction of particles and to understand the macroscopic characteristics expressed through this. However, as a result of analyzing 9 Chemistry I textbooks, the expression approach for equilibrium had some limitations. As a strategy to understand equilibrium at a sub-microscopic approach, the classes using scratch were consisted of a total of 4 hours, and it was implemented with 56 students. The classes were composed of 6 steps, and it was designed to understand equilibrium step by step. As a result of comparing the pretest and post- test, the number of students who got both the microscopic and macroscopic explanations of chemical equilibrium correct increased largely. Through this, it was possible to get a glimpse of the applicability of classes using scratch as the approach strategy of the sub-microscopic representation.