• 제목/요약/키워드: Sub-level sloping

검색결과 3건 처리시간 0.021초

환경오염 저감을 위한 석회석 광산개발방안에 대한 연구 (A Study on the Mining Method for Limestone Mines with Less Environmental Hazards)

  • 임한욱;김재동;백환조
    • 터널과지하공간
    • /
    • 제10권1호
    • /
    • pp.80-91
    • /
    • 2000
  • 석회석의 노천 채굴법은 갱내 채굴법에 비하여 채수율, 품위조절, 원가, 안전면에서 유리한 것으로 인식되고 있으나 발파로 인한 지반진동, 소음, 분진 등 환경 오염원을 유발시키며 특히 지형과 산림을 훼손한다 본고에서는 백두대간에 인접한 한라 석회석 광산을 모델로설정하고 연구하였다. 환경 오염원을 저감시키고, 원 지형 및 산림의 보존을 위하여 노천 채굴과 함께 갱내 채굴을 동시에 채택할 것을 제의한다. 갱내 채굴의 경우 중단 채굴법을 추천하며 이때 한 광획의 크기는 80(높이)$\times$70(너비)$\times$(100~120m)(연장)이며, 태수율은 약 42%로 예상된다. 환경오염 저감을 위한 대책도 제시하였다. 파쇄입도의 조정을 위하여 암반태 불연속면의 발달 상태를 고려하고, 장약공 밑부분과 중간부분의 장약밀도를 변경해야 한다. 환경오염 저감의 한 방안으로 차폐벽의 채택과 갱내 채굴시 출광 가능량 등을 검토하였다.

  • PDF

Geomorphology and Volcaniclastic Deposits around Dokdo: Dokdo Caldera

  • Chun, Jong-Hwa;Cheong, Dae-Kyo;Park, Chan-Hong;Huh, Sik;Han, Sang-Joon
    • Ocean and Polar Research
    • /
    • 제24권4호
    • /
    • pp.483-490
    • /
    • 2002
  • Detailed investigations on both submarine and subaerial volcaniclastic deposits around Dokdo were carried out to identify geomorphologic characteristics, stratigraphy, and associated depositional processes of Dokdo caldera. Dokdo volcano has a gently sloping summit (about 11km in diameter) and relatively steep slope (basal diameter is about 20-25 km) rising above sea level at about 2,270m. We found ragged, elliptical-form of Dokdo caldera with a diameter of about 2km estimated by Chirp (3-11 kHz) sub-bottom profile data and side scan sonar data for the central summit area of Dokdo volcano. We interpreted that the volcaniclastic deposits of Dokdo unconformably consist of the Seodo (west islet) and the Dongdo(east islet) formations based on internal structure, constituent mineral composition, and bedding morphology. The Seodo Formation mainly consisted of massive or inversely graded trachytic breccias (Unit S-I), overlain by fine-grained tuff (Unit S-II), which is probably supplied by mass-wasting processes resulting from Dokdo caldera collapse. The Dongdo Formation consists of alternated units of stratified lapilli tuff and inversely graded basaltic breccia (Unit D-I, Unit D-III, and Unit D-V), and massive to undulatory-bedded basaltic tuff breccias (Unit D-II and Unit D-IV) formed by a repetitive pyroclastic surge and reworking processes. Although, two islets of Dokdo are geographically near each other, they have different formations reflecting their different depositional processes and eruptive stages.

부산물 석고를 이용한 잔디 품질 개선 (Turf(Zoysia japonica L.) Quality Enhancement with By-product Gypsum)

  • 김계훈;홍숙진
    • 한국환경복원기술학회지
    • /
    • 제7권3호
    • /
    • pp.56-63
    • /
    • 2004
  • This study was carried out to find out the effect of by-product gypsum(phosphogypsum, PG) application on enhancement of turf quality. For the first experiment, 10 ton $ha^{-1}$ PG was applied to 1m${\times}$10m (width${\times}$length) Plots with 4 replicates on a sloping area of fairway where turf(Zoysia japonica L.) was grown. Both top- and sub-soil samples were collected before and after treatment and were analyzed for pH, EC(e1ectrica1 conductivity), Ca and Mg contents. At the same time when soil samples were collected, specific color difference sensor value(SCDSV) that represented chlorophyll contents, fresh and dry weight of the turf were determined to find out the effect of PG treatment on turf growth. SCDSV of turf from PG treated plots measured at 98 and 147 days after treatment were significantly higher than those from control. Considering higher fresh and dry weight of leaf per unit area from PG treated plots than that from control, it was concluded that the elevated Ca and S level of the PG treated plots resulted in vigorous leaf growth of turf. For the second experiment 2, 5 and 10 ton $ha^{-1}$ PG were applied to 1m${\times}$10m(width${\times}$length) Plots with 3 replicates at a closer location as was used for the first experiment to find out the appropriate PG application rate. Before and after treatment soil and plant samples were collected and were analyzed by the same way as the first experiment. The pH of all the soil samples collected from PG treated plots at 38 days after treatment was lower than that from control. This trend changed as time passed. However, the pH of the soil from 10 ton $ha^{-1}$ PG treated plot was lower than that from control during the whole period of the second experiment. SCDSV, fresh and dry weight of leaf from PG treated plots at all 3 rates were higher than those from control for the second experiment. PG application to turf will be beneficial for both mass consumption of by-product gypsum and enhancement of turf quality.